
1

Java I/O

Reading, Writing, and stuff

Announcement

• Office hour Wednesday…
– Moved to 1-2 rather than 2-3.

Project Announcements

• CS Labs will NOT be open during break.
– Machines may be available remotely.

• Still waiting on confirmation.

• New due dates:
– Minimum submission: Sunday, January 11th

– Final submission: Sunday, January 18th

Project Announcement

• You’ll need to create an “empty Customer”
class in order to test CustomerQueue
– Constructor
– toString();

Project Announcements

• Project Grade
– Clock – 10 points
– CustomerQueue – 30 points
– Customer – 30 points
– Register – 30 points

Java I/O

• For the next couple of classes we will be
talking about Java I/O
– This class: basics and low level I/O
– Next class: “wrappers” and high level I/O

• All Java I/O classes are defined in the
java.io package.

2

Java I/O

• Low level vs high level
– Low level: can only read/write a character or

byte at a time
– High level: can read/write strings that represent

different data types
• Ex. read/write an int, float,

Streams

• Basic low level mechanism for I/O in Java
is the stream

Streams

• Reading from a stream
– Open a stream
– While more info

• Read data
– Close the stream

• Writing to a stream
– Open a stream
– While more info

• Write data
– Close the stream

Data and Streams

• Types of data that can be read from/written to
streams
– Bytes (8-bits / bytes)

• Raw data

– Characters (16-bits / bytes)
• Text data

• Basic stream operations
– Read
– Write

The 4 base Java I/O classes
READ WRITE

CHAR

BYTE

Each of these are abstract classes

Reader Writer

InputStream OutputStream

A look at Reader

• public abstract class Reader {
– public int read() throws IOException

• Returns int in range (0 – 65535)
– public int read(char[] cbuf) throws
IOException

– public abstract int read(char[] cbuf,
int off, int len) throws IOException

• Returns number of chars read
}

• Returns –1 at end of stream

3

A look at Reader

• Also contains functions for
– Marking a location in a stream
– Skipping input
– Resetting current position
– Close the stream

A look at InputStream

• public abstract class InputStream{
– public int read() throws IOException

• Returns int in range (0 – 255)
– public int read(byte[] cbuf) throws
IOException

– public abstract int read(byte[] cbuf,
int off, int len) throws IOException

• Returns number of bytes read
}

• Returns –1 at end of stream

A look at InputStream

• Also contains functions for
– Marking a location in a stream
– Skipping input
– Resetting current position
– Close the stream

A look at Writer

• public abstract class Writer{
– public void write(int c) throws
IOException

• Only low order 16 bits are written
– public void write(char[] cbuf)
throws IOException

– public abstract void
write(char[] cbuf, int off, int
len) throws IOException

A look at Writer

• Also contains functions for
– Writing strings
– Flushing the stream
– Close the stream

A look at OutputStream

• public abstract class OutputStream{
– public void write(int b) throws
IOException

• Only low order 8 bits are read
– public void write(byte[] cbuf) throws
IOException

– public abstract void write(byte[]
cbuf, int off, int len) throws
IOException

• Also contains functions for
– Flushing the stream
– Close the stream

4

Observations

• Almost every operation will throw an
IOException if something goes wrong

• These classes are abstract!
– Don’t indicate how a read/write is to be done
– Don’t indicate where the data is coming from

or going to.
– These details will be filled in by subclasses.

Files

• File Object
– abstract representation of file and directories.
– Encapsulates all details of files and how they

are named.
– Create a File object by providing the filename

to the File constructor
•File F = new File
(“tmp/input.txt”);

Pipes

• Streams where the output of one process
becomes the input of another
– In UNIX: ls –l | more

• In Java, you can have independent
processes running. Each is called a thread.
– Pipes are used to let the output of one thread be

the input of another
• More when you get to CS3

Subclassing InputStream

Subclassing InputStream

• Based on where data is coming from
– File

•FileInputStream

– In Memory
•ByteArrayInputStream

•StringBufferInputStream (going away)

– Pipe
•PipedInputStream

Look at the FileInputStream

• public FileInputStream(String
name)throws FileNotFoundException

• public FileInputStream(File file)
throws FileNotFoundException

• Implements methods of InputStream class.

5

Subclassing OutputStream Subclassing OutputStream

• Based on where data is going
– File

•FileOutputStream

– In Memory
•ByteArrayOutputStream

– Pipe
•PipedOutputStream

Look at the FileOutputStream

• public FileOutputStream(String
name, boolean append)throws
FileNotFoundException

• public FileOutputStream(File file,
boolean append) throws
FileNotFoundException

• Implements methods of OutputStream class.

Subclassing Reader

Subclassing Reader

• Based on where data is coming from
– File

•FileReader

– In Memory
•CharArrayReader

•StringReader

– Pipe
•PipedReader

Look at FileReader

• public FileReader(String
name)throws FileNotFoundException

• public FileReader(File file)
throws FileNotFoundException

• Implements methods of Reader class.
• Actually a subclass of
InputStreamReader

6

InputStreamReader

• Converts read bytes to characters

Text

file

bytes InputStream

Reader

char
read()

Subclassing Writer

Subclassing Writer

• Based on where data is going
– File

•FileWriter

– In Memory
•CharArrayWriter

•StringWriter

– Pipe
•PipedWriter

Look at FileWriter
• public FileWriter(String name, boolean
append)throws FileNotFoundException

• public FileWriter(File file, boolean
append) throws FileNotFoundException

• Implements methods of Writer class.
• Actually a subclass of
OutputStreamWriter

OutputStreamWriter

• Converts characters to write to bytes

Text

file

bytes OutputStream

Writer

char
write()

Let’s look at some code

SimpleCopy – does copying of binary files
SimpleTextCopy – does copying of text files.
SimpleArrayCopy – like SimpleCopy but uses

arrays
SimpleTextArrayCopy – like

SimpleTextCopy but uses arrays

7

SimpleCopy
try {

FileInputStream fin = new FileInputStream (args[0]);
FileOutputStream fout = new FileOutputStream
(args[1]);

int n=0;
while ((n = fin.read()) != -1)

fout.write (n);

fin.close();
fout.close();

}
catch (IOException E){

System.out.println ("Problem: " + E.getMessage());
}

SimpleTextCopy
try {

FileReader fin = new FileReader (args[0]);
FileWriter fout = new FileWriter (args[1]);

int n=0;
while ((n = fin.read()) != -1)

fout.write (n);

fin.close();
fout.close();

}
catch (IOException E){

System.out.println ("Problem: " + E.getMessage());
}

SimpleArrayCopy
try {

FileInputStream fin = new FileInputStream (args[0]);
FileOutputStream fout = new FileOutputStream (args[1]);

int buflen = 80;
byte buffer[] = new byte[buflen];
int n;
while ((n = fin.read(buffer)) != -1)

fout.write (buffer,0,n);
fin.close();
fout.close();

}
catch (IOException E){

System.out.println ("Problem: " + E.getMessage());
}

SimpleTextArrayCopy
try {

FileReader fin = new FileReader (args[0]);
FileWriter fout = new FileWriter (args[1]);

int buflen = 80;
char buffer[] = new char[buflen];
int n;
while ((n = fin.read(buffer)) != -1)

fout.write (buffer,0,n);
fin.close();
fout.close();

}
catch (IOException E){

System.out.println ("Problem: " + E.getMessage());
}

Summary

• Basic I/O mechanism is streams
• Streams for read / write
• Streams to chars / bytes
• Reader, Writer, InputStream, OutputStream
• File Object
• Subclassing based on source / destination.
• IOExceptions

Tomorrow

• “wrapping” a class
• Higher level I/O classes.

