
1

The Last of the Producer App

Plan for This Week

• Today
– The last of the Payroll App.
– Project 1

• Tomorrow and Wednesday:
– Java I/O

Plan ahead…

• The week we return:
– Wednesday, Jan 7th – Exam 1

• Will cover
– Inheritance
– Interfaces
– Exceptions

– Friday, Jan 9th

• Project 1 – minimum submission

Before we start

• Any questions?

Back to our Payroll app

• Final code and javadocs on my Web site.

Back to our Payroll app

• Class hierarchy for theatre app
Performer

Actor Musician

isA isA

Guitarist Pianist Drummer

2

Back to our Payroll app

• Instrument hierarchy

Instrument

Guitar Piano Drums

Changes to the Payroll class
public class Payroll {
private Performer performer[];
private int nPerf;

public void addPerformer (Performer P) throws
PayrollFullException

{
if (nPerf == MAXPERF)

throw new PayrollFullException()

performer[nPerf] = P;
nPerf++;

}

calculateTotalPay
public double calculateTotalPay()
{

double sum = 0.0;
for (int i=0; i < nPerf; i++)

sum += performer[i].calculatePay();
return sum;

}

A look at Instruments
public abstract class Instrument {
private double rentalCost;

protected Instrument (double cost)
{

rentalCost = cost;
}

public double getWeeklyRental ()
{

return rentalCost;
}
}

A look at instruments
public class Guitar extends Instrument {

public Guitar ()
{

super (200.0);
}

protected Guitar (double rate)
{

super (rate);
}

}

A look at Performer
public abstract class Performer implements Comparable {
private String myName;
private double payPerPerf;
private int nPerformances;

protected Performer (String name, double rate)
{

myName = name;
payPerPerf = rate;
nPerformances = 0;

}

}

3

A look at Performer
public abstract double calculatePay();

protected double getBasePay()
{

return nPerformances * payPerPerf;
}

public void perform (int n)

{
nPerformances = n;

}

Now Actor
public class Actor extends Performer {

private static final double PAYRATE = 200.0;

public Actor (String name)
{

super (name, PAYRATE);
}

public double calculatePay ()
{

return getBasePay();
}

}

And Musician
public class Musician extends Performer {

private Instrument myInstrument;
private static final double PAYRATE = 100.0;

public Musician(String name, Instrument I)
{

super(name, PAYRATE);
myInstrument = I;

}
public double calculatePay()
{

return getBasePay() + myInstrument.getWeeklyRental();
}

Finally Musician subclasses
public class Drummer extends Musician {

public Drummer (String name)

{
super (name, new Drums());

}

}

Payroll App

• Any questions?

