
1

Inheritance and Polymorphism

Implementation

Game plan

• Inheritance, Subclassing, Polymorphism
– Yesterday: Basic concepts
– Today: How it’s done in Java

But first…

• Questions from last time?

Inheritance and Java

• Class hierarchy for theatre app
Performer

Actor Musician

isA isA

Guitarist Pianist Drummer

Inheritance and Java

• To define a class as a subclass, in Java we
say that the subclass extends the
superclass

Inheritance and Java
public class Performer {
…
}
public class Musician extends Performer {
…
}

public class Guitarist extends Musician {
…
}

2

Inheritance, Java, and Constructors

• When in a subclass, to call the constructor of your
superclass use the super() function.

• super() must be called if all of the constructors
for a superclass have arguments.

• super(), if used, must be the first statement in
the constructor of the subclass.

Inheritance, Java, and Constructors
public class Performer {

private String myName;

// constructor
public Performer (String name){…}

}

public class Musician extends Performer {
private Instrument myInstrument;
public Musician (String name, Instrument I)
{

super(name);
myInstrument = I;

}
}

Inheritance, Java, and Constructors
public class Musician extends Performer {

private Instrument myInstrument;
public Musician (String name, Instrument I)
{

super(name);
myInstrument = I;

}
}

public class Guitarist extends Musician {
public Guitarist(String name)
{

super (name, new Guitar());
}

}

The Java Object class

• All classes in Java, whether explicitly stated
or not, are subclasses of the java Object
class (defined in package java.lang)

• String Object.toString() method

toString() example
public class Musician extends Performer{
…

public String toString()
{

return “I am a musician”;
}

}

public class Drummer extends Musician {
…

public String toString()
{

return “I am a drummer”;
}

}

toString example
Object P = new Performer (“foo”);
Object M = new Musician (“fred”, new Guitar());
Object D = new Drummer (“keith”);
Object G = new Guitarist (“barney”);

System.out.println (M.toString());
System.out.println (D.toString());
System.out.println (G.toString());
System.out.println (P.toString());

Output:
I am a musician
I am a drummer
I am a musician
Performer@77d163

3

Accessing superclass methods using
super

• You can access any public or protected
member of your superclass explicitly using
super

public class Drummer extends Musician {
…

public String toString()
{
return super.toString() + “ that plays the drums”;

}
}

Accessing superclass methods
using super

• You can only specify one level up the
hierarchy.

public class Drummer extends Musician {
…

public String toString()
{
// This will cause a compiler error
return Performer.toString() +
“ that plays the drums”;

}
}

Just a side note

• You cannot override/redeclare
methods/variables declared as final in the
superclass.

Declaring abstract classes

• To declare a class as abstract, use the
abstract keyword when defining the
class:
public abstract class Performer {
…
}

Declaring abstract methods

• To declare a method to be abstract, add the
abstract keyword to the method.

• The abstract method in the superclass will
have no body defined for it.
public abstract class Performer {
…

public abstract double calculatePay();
}

Declaring abstract methods

• If a class has an abstract class, it must be
declared as abstract

• Will fail at compile time

public class Performer {
…

public abstract double calculatePay();
}

4

Why use abstract classes

• Abstract classes
– provide a set of methods that a subclass must

implement
– Subclass Implementations may be vastly

different but set of methods are the same

Abstract classes

• FileSystem Object

FileSystem

PCFileSystem MacFileSystem

SunFileSystem

Abstract char read()

Declaring abstract methods

• Abstract classes
– A class that has abstract method must be

declared as abstract
– However, you can declare an class that does not

have abstract methods to be abstract.

Abstract classes
public abstract class Instrument {
private double rentalCost;

protected Instrument (double cost)
{

rentalCost = cost;
}

public double getWeeklyRental ()
{

return rentalCost;
}
}

Abstract classes

• Why would one do this?
– Design purposes – If, in your logical design of

your app, a class is so general that it doesn’t
make sense to instantiate an object of the class
directly

– Reserve the right to add abstract methods later.

More on Polymorphism

• When you declare a variable with type of a
superclass, it can hold an object of type
superclass or any class inherited from
superclass.

• When sending messages to that object via a
method call, you must use the method set
available by the superclass

5

More on Polymorphism
public abstract class Performer {
…

public abstract double calculatePay();
}

public class Musician extends Performer {
…

public double calculatePay() { …}

public Instrument getInstrument() { … }
}

Performer P = new Musician(“fred”);
double pay = P.calculatePay(); // this call is okay
Instrument I = P.getInstrument(); // this call is bad

More on Polymorphism

• Polymorphism works on method arguments
as well.
public class Payroll {
…

public void addPerformer(Performer P) { ... }

public static void main (String args[]) {

Payroll P = new Payroll();
Guitarist G = new Guitarist (“fred”);
P.addPerformer (G);
...

}
}

Multiple Inheritance

• In some languages (like C++), it is possible
for class to inherit from more than one class
(I.e. have more than one superclass).

• This is called multiple inheritance.
• Java does not support multiple inheritance.
• Instead, Java provides a different

mechanism: interfaces.

Interfaces

• An interface defines a set of methods that
need to be implemented by a class.

• It’s “somewhat” like an abstract class that
contain only constants and method
definitions where all of the methods are
abstract.

• A class does not extend an interface,
instead, it implements an interface.

Interfaces

• To define an interface:
public interface InterfaceName {

// constants defined by the interface
public static int constant1 = 12;
public static int constant2 = 20;

// set of methods that need to be defined by
// classes implementing this interface
public void method1();
public float method2 (int arg1);

}

Interfaces

• When a class has definitions for all methods of an
interface, we declare that class to implement the
interface:

• A class can have only one superclass, however, it
can implement as many interfaces as it likes.

public class Foo implements InterfaceName {
…
}

public class Foo2 extends Foobar implements
InterfaceName2, IntefaceName3 {
…
}

6

Interface

• Example: java.lang.Comparable
– Interface for objects that can compare itself

with other objects
– Used by sorting methods in the java.util

package.
public interface Comparable {

public int compareTo(Object O);
}

Interface

• Let’s make our Performer implement
Comparable

public class Performer implements Comparable {
private String myName; …

public int compareTo(Object O)
{

// Objects must be of same class if not
// exception is thrown
Performer P = (Performer)O;

// compare by name
return myName.compareTo (P.myName)

}

Summary

• extends
• super()
• abstract

• super again
• interface / implements

• Questions?

