
1

Inheritance and Polymorphism

Concepts

Game plan

• Inheritance, Subclassing, Polymorphism
– Today: Basic concepts
– Tomorrow: How it’s done in Java

Before we begin

• Questions from last time?

• Project to be released this week

Something to think about for next class!

• Any theatre fans in the house?

When we last left our wannabe producer

• Developed a payroll application that will calculate
total weekly salary paid to performers

• New requirements:
– Add musicians to the mix
– Musicians get reimbursed for instrument rental as well

as getting a base pay per performance
– The pay rate for musicians is different than that for

actors.
• Wish to achieve with maximum reuse of code

Potential Problems

• Musicians
– Have data items that other performers do not
– Determine their pay differently than other

performers.
• Yet…

– The producer still needs to maintain pay info
about musician AND other performers

2

Consider this code in payroll
/**
* Caculates the weekly pay for all of the performers
*
* @returns the total weekly pay
*/
public double calculateTotalPay()
{

double sum = 0.0;
for (int i=0; i < nPerf; i++)

sum += performers[i].calculatePay();
return sum;

}

Adding musicians does not change this
algorithm!

What would be nice

• Keep the same code
• Let each object in the array compute it’s

pay based on the kind of object it is.

• We can achieve this using inheritance /
subclassing.

Subclassing

• Defining a class as a specialization or
extension of another class.

• The more general class is called the
superclass.

• The more specific class is called the
subclass.

• Implies an IS-A relationship.

Subclassing in our example
• Define 2 classes “Actor” and “Musician”
• Both Actors and Musicians are specializations of

Performer

Performer

Actor Musician

isA isA

superclass

subclasses

Class Heirarchies

• Class heirarchies can be as deep as needed:

Performer

Actor Musician

isA isA

Guitarist Pianist Drummer

Subclassing and Inheritance

• When you define a class as a subclass:
– The subclass inherits all of the data members

and methods of the superclass.
– In addition, a subclass can have data/methods

that are it’s own.
– Inheritance is transitive:

• I.e. If B is a subclass of A and C is a subclass of B,
then C inherits the data/methods from both B and A.

3

Data/method access

• Protected data/methods
– Recall that data/methods can be classified as:

• Public – Objects of all classes can access the data /
method

• Private – Data / methods accessible only by the
objects that belong to the same class.

– New access control category
• Protected – data/methods accessible by objects of

the same class and all subclasses.

Data / Method access

• An object of class B
or C can access:
– A.pubData
– A.protData

• It cannot access
– A.priData

pubData

priData

protData

pubData

priData

protData

pubData

priData

protData

A

B C

Data / Method access

• An object of class A
can access:
– B.pubData

• It cannot access
– B.priData
– B.protData

pubData

priData

protData

pubData

priData

protData

pubData

priData

protData

A

B C

Data / Method access

• An object of class C
can access:
– B.pubData

• It cannot access
– B.priData
– B.protData

pubData

priData

protData

pubData

priData

protData

pubData

priData

protData

A

B C

Data / Method access

• An object of class D can
access:
– B.pubData
– B.protData
– A.pubData
– A.protData

• It cannot access
– B.priData
– A.priData

pubData

priData

protData

pubData

priData

protData

pubData

priData

protData

A

B C

pubData

priData

protData

D

A break for questions…

4

Method Overriding

• A subclass can define it’s own version of
any non-final method of it’s superclass.
– This is called method overriding
– In our example,

• Both Actor and Musician can override the definition
of calculatePay()

Polymorphism

• A variable of a superclass can reference an
object of any one of it’s subclasses.

• The variable remembers what subclass of
object is referenced so that the correct
methods of the subclass are called.

Polymorphism in Action

• Example
Performer A = new Actor(“foo”);
Performer M = new Musician (“bar”);
Performer P = new Performer (“fred”);

// calls Actor’s calculatePay
float Apay = A.calculatePay();

// calls Musician’s calculatePay
float Mpay = M.calculatePay();

// calls Performer’s calculatePay
Float Ppay = P.calculatePay();

Polymorphism
/**
* Caculates the weekly pay for all of the performers
*
* @returns the total weekly pay
*/
public double calculateTotalPay()
{

double sum = 0.0;
for (int i=0; i < nPerf; i++)

sum += performers[i].calculatePay();
return sum;

}

Polymorphism is performed at RUNTIME

Polymorphism

• Must use methods defined in superclass

Performer A = new Actor(“foo”);
Performer M = new Musician (“bar”);
Performer P = new Performer (“fred”);

// Let’s say that Musician has an
// addInstrument() method which
// Performer does not

M.addInstrument(); // would cause a compile
// error

Polymorphism

• Must use methods defined in superclass

Performer A = new Actor(“foo”);
Musician M = new Musician (“bar”);
Performer P = new Performer (“fred”);

// Let’s say that Musician has an
// addInstrument() method which
// Performer does not

M.addInstrument(); // This would be okay

5

Abstract method

• Suppose Performer had no implementation
of calculatePay()
– Then, it is required that all subclasses define a

caculatePay() method
– Performer::calculatePay() is considered an

abstract method
• I.e. the method is not defined by the Performer class

and must be implemented by all subclasses of
Performer

Abstract method

• Private superclass methods cannot be
declared as abstract.
– Anyone know why?

• Static superclass methods cannot be
declared as abstract.

Abstract class

• Any class with abstract methods are considered
abstract classes.
– Generalized placeholder/definition for more specific

objects
– Specialized subclasses fill in the details for the general

abstract class methods.
– Cannot instantiate an object of an abstract class

directly! Must always instantiate an object of a
subclass
• Performer P = new Performer (“foo”) would not

be allowed if Performer was abstract.

Abstract class

• Using abstract classes
– A superclass should be declared abstract if we

know that all types of that superclass can/will
be defined by some subclass.

– If it’s acceptable for a given superclass not to
be further specialized, then the superclass
should not be declared as abstract.

Forms of inheritance

• Specialization – The subclass is a specialized form
of the superclass

• Specification – The subclass defines new behavior
to existing functionality in the superclass

• Extension – The subclass defines new
functionality to the parent class

• Limitation – The subclass restricts the use of
functionality of the superclass.

• Generalization – The subclass overrides methods
in the superclass

To summarize

• Subclasses
• Inheritance
• Protected data/methods
• Method override
• Polymorphism
• Abstract classes
• Forms of inheritance

6

Next time…

• How we do all this in Java

• Questions?

