Inheritance and Polymorphism

Concepts

Game plan

« Inheritance, Subclassing, Polymorphism
— Today: Basic concepts
— Tomorrow: How it’s done in Java

Before we begin

 Questions from last time?

* Project to be released this week

Something to think about for next class!

¢ Any theatre fans in the house?

When we last left our wannabe producer

» Developed a payroll application that will calculate
total weekly salary paid to performers

» New requirements:
— Add musicians to the mix

— Musicians get reimbursed for instrument rental as well
as getting a base pay per performance

— The pay rate for musicians is different than that for
actors.

» Wish to achieve with maximum reuse of code

Potential Problems

* Musicians

— Have data items that other performers do not

— Determine their pay differently than other
performers.

e Yet...

— The producer still needs to maintain pay info
about musician AND other performers




Consider this code in payroll

Jx*

* Caculates the weekly pay for all of the performers
*

* @returns the total weekly pay
*/

public double calculateTotalPay()
{
double sum = 0.0;
for (int i=0; i < nPerf; i++)
sum += performers[i].calculatePay();
return sum;

Adding musicians does not change this
algorithm!

What would be nice

» Keep the same code

« Let each object in the array compute it’s
pay based on the kind of object it is.

« We can achieve this using inheritance /
subclassing.

Subclassing

« Defining a class as a specialization or
extension of another class.

» The more general class is called the
superclass.

» The more specific class is called the
subclass.

« Implies an IS-A relationship.

Subclassing in our example

« Define 2 classes “Actor” and “Musician”
« Both Actors and Musicians are specializations of

Performer
superclass
isA isA
subclasses ‘ Actor ‘ ‘ Musician ‘

Class Heirarchies

« Class heirarchies can be as deep as needed:

isA isA
‘ Actor ‘ ‘ Musician ‘
\Guitarist \ \Pianist \ \Drummer \

Subclassing and Inheritance

* When you define a class as a subclass:
— The subclass inherits all of the data members
and methods of the superclass.
— In addition, a subclass can have data/methods
that are it’s own.
— Inheritance is transitive:

« l.e. If Bis asubclass of A and C is a subclass of B,
then C inherits the data/methods from both B and A.




Data/method access

 Protected data/methods

— Recall that data/methods can be classified as:

« Public — Objects of all classes can access the data /
method

« Private — Data / methods accessible only by the
objects that belong to the same class.

— New access control category

« Protected — data/methods accessible by objects of
the same class and all subclasses.

Data / Method access

* An object of class B

or C can access:

— A.pubData

— A.protData B
* It cannot access

— A.priData

Data / Method access

* An object of class A
can access:

- B.pubData

* It cannot access
— B.priData
- B.protData

Data / Method access

* An object of class C
can access:

— B.pubData

* |t cannot access
— B.priData
- B.protData

Data / Method access

» An object of class D can
access:
- B.pubData
— B.protData
— A.pubData
— A.protData
« |t cannot access
- B.priData
— A.priData

A break for questions...




Method Overriding

A subclass can define it’s own version of
any non-final method of it’s superclass.
— This is called method overriding

— In our example,

« Both Actor and Musician can override the definition
of calculatePay()

Polymorphism

« A variable of a superclass can reference an
object of any one of it’s subclasses.
 The variable remembers what subclass of

object is referenced so that the correct
methods of the subclass are called.

Polymorphism in Action

» Example
Performer A
Performer M
Performer P

new Actor(“foo”);
new Musician (“bar™);
new Performer (“fred”);

// calls Actor’s calculatePay
float Apay = A.calculatePay();

// calls Musician’s calculatePay
float Mpay = M.calculatePay();

// calls Performer’s calculatePay
Float Ppay = P.calculatePay();

Polymorphism

J*x
* Caculates the weekly pay for all of the performers
* @returns the total weekly pay
*/

public double calculateTotalPay()

double sum = 0.0;
for (int i=0; i < nPerf; i++)

sum += performers[i].calculatePay();
return sum;

}
Polymorphism is performed at RUNTIME

Polymorphism

» Must use methods defined in superclass

Performer A
Performer M
Performer P

new Actor(“foo”);
new Musician (“bar™);
new Performer (“fred”);

// Let’s say that Musician has an
// addlInstrument() method which
// Performer does not

M.addInstrument(); // would cause a compile
// error

Polymorphism

« Must use methods defined in superclass

Performer A = new Actor(“foo);
Musician M = new Musician (“bar™);
Performer P = new Performer (“fred”);

// Let’s say that Musician has an
// addlInstrument() method which
// Performer does not

M.addInstrument(); 7/ This would be okay




Abstract method

 Suppose Performer had no implementation
of calculatePay()
— Then, it is required that all subclasses define a
caculatePay() method
— Performer::calculatePay() is considered an
abstract method

« |.e. the method is not defined by the Performer class
and must be implemented by all subclasses of
Performer

Abstract method

Private superclass methods cannot be
declared as abstract.

— Anyone know why?

Static superclass methods cannot be
declared as abstract.

Abstract class

 Any class with abstract methods are considered

abstract classes.

— Generalized placeholder/definition for more specific
objects

— Specialized subclasses fill in the details for the general
abstract class methods.

— Cannot instantiate an object of an abstract class
directly! Must always instantiate an object of a
subclass

= Performer P = new Performer (“foo’) would not
be allowed if Performer was abstract.

Abstract class

Using abstract classes

— A superclass should be declared abstract if we
know that all types of that superclass can/will
be defined by some subclass.

— If it’s acceptable for a given superclass not to
be further specialized, then the superclass
should not be declared as abstract.

Forms of inheritance

« Specialization — The subclass is a specialized form
of the superclass

« Specification — The subclass defines new behavior
to existing functionality in the superclass

 Extension — The subclass defines new
functionality to the parent class

 Limitation — The subclass restricts the use of

functionality of the superclass.

Generalization — The subclass overrides methods

in the superclass

To summarize

Subclasses

Inheritance

Protected data/methods
Method override
Polymorphism
Abstract classes

Forms of inheritance




Next time...

* How we do all this in Java

e Questions?




