
1

Hashing

Introduction

First things first…

• Project 1
– Still working on grading
– Definitely by tomorrow

Second things second…

• Project 2
– try targets are now up.
– Mail about VFSystem.find()
– Minimum Submission

• Entry.java and Document.java
• Due this Friday, February 6th

• REMEMBER MINIMUM SUBMISSION RULE!!!
– Final Submission

• Due Sunday, February 15th

Third things third…

• Exam 2: This Wednesday
– Topics:

• Java I/O
• Recursion
• Analysis of Algorithms
• Searching
• Sorting

• Review Session
– Tonight 4-6 Building 70 Auditorium

Exam Topics

• Java I/O
– 4 Basic Classes:

• Reader, Writer – for character data
• InputStream, OutputStream – for byte data
• Wrapper Classes – for high level I/O

• Do not memorize methods…will provide Javadocs
as needed.

Exam Topics

• Recursion
– What is recursion
– Step through a recursive function
– Avoid this guy…

2

Exam Topics

• Speaking of recursion
– Note also that you can always turn a recursive

solution into a iterative solution by creating and
maintaining a “state stack”

• Which is exactly what a recursive system does under
the hood.

• …and no, this will not be on the exam!!!

Exam Topics

• Analysis of algorithms
– Big O
– Big Theta

• Difference between the two

– Calculating
• Loop within a loop

Exam Topics

• Searching
– Linear Search

• Θ (n)
– Binary Search

• Θ (log n)

Exam Topics

• Sorting
– Simple Sort

• Insertion
• Selection
• Bubble
• All Θ(n2) – average case

– Divide and Conquer Sorts
• Merge Sort
• Quicksort
• Both Θ (n log n) – average case

Exam Topics

• Questions?

Searching

• Suppose are given a collection of items and we
will need to see if a given object is in the
collection:
– Linear Search

• Θ (n)

– Binary Search
– Binary Search Tree

• Θ (log n)

• Can we do better?

3

Hashing

• What if the object itself can give its location
in the collection

• This is called Hashing

Object

Hashing Terminology

Object

Hash

function

bucketsIndex into
bucket array

Hash table

About Hashing functions

• Converts object to index into bucket array.
• Goal

– Distribute objects equally among buckets
– Bad function

• Add first 3 character codes of a string

– Good function
• Add all character codes of a string
• Address where object is found in memory

• Should be Efficient

About Hashing functions

• Hashing rules
– Hashing function called on same object must

always return same value
– Ideal hashing function will produce “almost

random-like” values when applied on different
objects.

About Hashing functions

• Ultimately, hashing function will need to fit
within the bounds of an array.
– index = (hash(O)) % n

Operations on Hash tables

• Insert
– add an object to the hash table

• Remove
– remove an object from the hash table

• Find
– Determine if a given object is in the hash table.

4

Insert

Object

Hash

function
buckets

Index into
bucket array

1) Apply hash
function to
object

2) Add object
to the index
returned by
the hash
function

Remove

Object

Hash

function
buckets

Index into
bucket array

1) Apply hash
function to
object to see
where it
would be if in
the hash table

2) If item is
there, remove
it (and replace
will a “blank
object”)

Find

Object

Hash

function
buckets

Index into
bucket array

1) Apply hash
function to
object to see
where it
would be if in
the hash table

2) If item is
there return
true, else
return false

Advantages of hashing

• Insert, Remove, Find
– Performed in constant time
– Time dependent only on complexity of hash

function.

Collisions

• What happens if two objects hash to the
same index?
– Hash functions aren’t perfect!
– When this happens, it is called a collision.

• How do we handle collisions?

Open address hashing

• Ways to deal with collisions
– Open-address hashing – find another spot to put

it
• Linear Probing – go to next unfilled bucket

5

Linear Probing – Insert

Object

Hash

function
buckets

Index into
bucket array

1) Apply hash
function to
object to see
where it
should go

2) If bucket is
full then, find
next available
bucket.

3) If no open
bucket found,
start again at
top of hash
table

Linear Probing – Find

Object

Hash

function
buckets

Index into
bucket array

1) Apply hash
function to
object to see
where it
should be

2) If bucket is
has item in it,
return true

3) If bucket does not have object in it,
but is not empty, traverse the table until
either the object or an empty bucket is
found

Linear Probing – Why we need the “blank” object

Object

Hash

function
buckets

Index into
bucket array

1) Apply hash
function to
object to see
where it
should be

2) If bucket is
has item in it,
return true

3) If bucket does not have object in it,
but is not empty, traverse the table until
either the object or an empty bucket is
found

Linear Probing

• Clustering
– If your hash function is less than optimal

• Many objects hashing to the same index
• End up with clustering

• In the worst case
– All objects hash to the same index
– Must do a linear search through the hash table
– Θ (n)

Linear probing

Object

Hash

function
buckets

cluster

Index into
bucket array

Double Hashing

• Another way to deal with collisions
– Open-address hashing – find another spot to put

it
• Double hashing – use a second hash function to

determine how many slots forward to look

6

Double Hashing – Insert

Object

hash1

buckets
3) Apply
increment to
index until
empty bucket
is found

2) If bucket is
full, apply a
second hash
function to get
an increment hash2

Index into
bucket array

1) Apply hash
function to
object to see
where it
should be

Index
increment (2)

Double Hashing – Insert

Object

hash1

buckets3) Apply
increment to
index until
empty bucket
is found

2) If bucket is
full, apply a
second hash
function to get
an increment hash2

Index into
bucket array

1) Apply hash
function to
object to see
where it
should be

Index
increment (2)

Double Hashing

• Double hashing
– Hash function considerations

• Must assure that increment returned by second hash
function will result in all empty buckets being
visited.

• Can assure this by making the “range” of the two
hashing functions to be relatively prime.

– The two ranges have no common multiples except 1.

Double Hashing

• Double hashing
– Hash function considerations

• In our example, range of hash1 is 8 (size of hash
table)

• Hash2 returns a 2.
• 8 is a multiple of 2
• Problem!

Double Hashing

• Double hashing
– Hash function considerations
– Finding relatively prime numbers

• Make the size of the hash table to be prime
• Make the range of hash 2 to be size of hash table –

2.
– Twin primes.

• Note that hash2 should never return 0.

Double Hashing – Find

Object

hash1

buckets

2) If bucket
contains
object return
true.

hash2

Index into
bucket array

1) Apply hash
function to
object to see
where it
should be

4) Apply increment to index until object or
empty bucket is found

Index
increment (2)

3) Else apply a second hash function to get an
increment

7

Open-address hashing

• In case of collision
– Find another open bucket to place your object

• Linear Probing
– Search for empty bucket sequentially

• Double hashing
– Use a second hash function to get an increment

– Questions?

Next time

Chained Hashing
Another way to deal with collisions.

