
1

Exceptions

or Handling Things when things go
wrong

Before we begin

• Are there any questions on inheritance

Today’s class

• Exceptions
– A means for handling “exceptional” situations.

Back to our payroll app

• Recall from the Payroll class:

• Suppose the caller of addPerformer wants to do
something else besides just printing an error
message?

public void addPerformer (Performer P)
{
if (nPerf == MAXPERF)
System.err.println ("Payroll is full.”);

else {
performer[nPerf] = P;
nPerf++;

}
}

Exceptions

• Exceptions allow a method to tell the caller
when an error has occurred
– Many times it is the calling function that knows

what to do when an error occurs.
– Exceptions allow the caller to respond to the

error rather than the method itself.
– Different callers may wish to respond to

particular errors differently.

Exceptions
• When an error occurs, an exception will be

thrown.
• When an exception is thrown, the exception gets

passed to the calling function.
• This function may:

– Catch the exception, then perform whatever error
handling is appropriate or

– Pass the exception up the call stack to the function that
called it.

• If an exception reaches the main method and is not
caught and handled, the program will terminate.

2

Exceptions in Java

• In Java, an exception object, holding
information about the error, is created and
thrown.

• This object contains:
– A snapshot of the program when the error

occurred
– An optional error message

Exceptions in Java
Object

Throwable

Exception Error

RunTimeExceptionOther
Classes

Other
Classes

Other
Classes

Exceptions in Java

• Throwable
– top class in hierarchy

• Error
– Thrown when a very serious condition occurs
– Not expected to be caught or dealt with

• Exception
– Errors that can and should be caught

Exceptions in Java

• RunTimeException
– Exceptions that are not required to be caught.

• ArithmeticException
• IndexOutOfBoundsException
• NullPointerException

• All Exceptions that are not dervived
from RunTimeException must either be
caught or “declared”

Exceptions in Java
Object

Throwable

Exception Error

RunTimeExceptionOther
Classes

Other
Classes

Other
Classes

Not required to
be caught

Throwing Exceptions

• A method can throw an Exception by using
the throw clause.

• If a method throws a non-runtime
exception, the definition of the function
must “declare” that an exception can be
thrown.

• When a method throws an exception,
execution in that method ceases.

3

Throwing Exceptions

• Payroll app
– Let’s throw an exception when the Payroll is

overfilled instead of issuing an error message

public void addPerformer (Performer P)
{
if (nPerf == MAXPERF)
System.err.println ("Payroll is full.”);

else {
performer[nPerf] = P;
nPerf++;

}
}

Throwing Exceptions
public class PayrollFullException extends Exception
{

public PayrollFullException (String msg)
{super (msg);}

}

public class Payroll {...
public void addPerformer (Performer P)

throws PayrollFullException
{
if (nPerf == MAXPERF)
throw new PayrollFullException(“I am full”);

performer[nPerf] = P;
nPerf++;

}
}

Throwing Exceptions
/**
* Adds a performer to the payroll. Will throw
* an exception if the payroll is currently full.
*
* @param P the performer to be added
* @exception PayrollFullException if payroll is full
*/

public void addPerformer (Performer P)
throws PayrollFullException

{
if (nPerf == MAXPERF)
throw new PayrollFullException();

performer[nPerf] = P;
nPerf++;

}

Throwing Exceptions
/**
* Adds a performer to the payroll. Will throw
* an exception if the payroll is currently full.
*
* @param P the performer to be added
* @throws PayrollFullException if payroll is full
*/

public void addPerformer (Performer P)
throws PayrollFullException

{
if (nPerf == MAXPERF)
throw new PayrollFullException();

performer[nPerf] = P;
nPerf++;

}

Catching Exceptions

• You catch and handle exceptions by using the
try/catch/finally statement
try {

statement(s) that can throw exceptions
}
catch (ExceptionClass E) {

statements that handles exception
}
finally {

cleanup code
}

Catching Exceptions
public void doUpdate (Performer P)
{

try {
addPerformer (P);

}
catch (PayrollFullException E)
{

// print out the error message
System.out.println (E.getMessage());

// do whatever else must be done…
}

}

4

Catching Exceptions

• The last example will only catch Exceptions
of class PayrollFullException

• One can catch Exceptions of multiple
classes, each with a different handler by
using the general form of the
try/catch/finally statement.

Catching Multiple Exceptions

try {statement(s)}
catch (ExceptionClass1 name1) {…}
catch (ExceptionClass2 name2) {…}
catch (ExceptionClass3 name3) {…}
...

catch (ExceptionClassn namen) {…}
finally {cleanup code }

Catching Multiple Exceptions
• Of course, since all exceptions are

subclasses of the Exception class, you can
catch all exceptions:
try {statement(s)}
catch (Exception E) {…}
finally {…}

In this case, exceptions of all types will be
handled the same

Catching Multiple Exceptions

• When catching multiple exceptions in a
single try/catch statement
– The more specific Exceptions must be listed

first.

Catching Multiple Exceptions
public FooException extends Exception {…}
--

try {
// call a function that throws a Foo Exception

}
catch (Exception E) { // do something}

catch (FooException F) { // do something else}

Will cause a compile error

Polymorphism and Exceptions

• Polymorphism does indeed work when
declaring what exceptions are thrown by a
function
public void doit (int a) throws
Exception
{

if (a > 0) throw new FooException();
else throw new OofException();

}

5

Polymorphism and Exceptions

• However, functions calling doit must catch
exceptions declared by doit.

try {
doit(10);

}
catch (FooException E) { // do something}
catch (OofException F) { // do something else}

Would cause a compile error

Polymorphism and Exceptions

• This is okay

try {
doit(10);

}
catch (FooException F) { // do something}

catch (OofException O) { // do something else}
catch (Exception E) { // do even something else}

Catching exceptions

• How do you know what exceptions need to
be caught?
– Check javadocs for objects whose methods you

are calling
– Let the compiler do the checking.

Passing on exceptions

• A method M that calls a method P that
throws an exception may choose not to
catch the exception.
– The exception will get passed to the caller of

M.
– If P throws an exception that is not a
RunTimeException, M must declare that it
too can throw an exception

Passing on Exceptions
public void doUpdate (Performer P)
{

addPerformer (P);
}

Would cause a compiler error since
addPerformer throws a
PayrollFullException and doUpdate
doesn’t catch it.

Passing on Exceptions

Instead, if doUpdate wants to pass on this
exception it must declare that it can throw a
PayrollFullException

public void doUpdate (Performer P)
throws PayrollFullException

{
addPerformer (P);

}

6

Back to Payroll

• Note that we could have left out the error
check altogether.

• What would happen when the payroll gets
overfilled?

public void addPerformer (Performer P)
{
performer[nPerf] = P;
nPerf++;

}

Finally finally

• The finally clause is optional, and is not
frequently used

• It allows for cleanup of actions that occurred in
the try block but may remain undone if an
exception is caught

• Code in the finally block will get called regardless
of whether an exception is caught or not

• Most useful when there is more than 1 exit from a
function

Finally finally

try {
// some code that opens a window
openWindow();

}
catch (MildException M)
{

// do some handling, but okay to continue after
// handling error

}
catch (BadException B)
{

// do some exception handling..but leave function
// since error is to severe to carry on
...
return;

}

// close the window opened in the try block
closeWindow();

Finally finally

try {
// some code that opens a window
openWindow();

}
catch (MildException M)
{

// do some handling, but okay to continue after
// handling error

}
catch (BadException B)
{

// do some exception handling..but leave function
// since error is to severe to carry on
...
// must assure window gets closed
closeWindow();
return;

}
// close the window opened in the try block
closeWindow();

Finally finally
try {

// some code that opens a window
openWindow();

}
catch (MildException M)
{

// do some handling, but okay to continue after
// handling error

}
catch (BadException B)
{

// do some exception handling..but leave function
// since error is to severe to carry on
...
return;

}
finally {

// close the window opened in the try block
// will get called no matter if an exception
// is caught or not
closeWindow();

}

Summary

• Exceptions
• Throwable hierarchy
• Throwing exceptions
• Catching exceptions

– try / catch / finally

• Passing exceptions on

7

Questions?

• Next Week:
– Project 1
– The last of the Payroll App
– File I/O using Java

