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Exceptions

or Handling Things when things go 
wrong

Before we begin

• Are there any questions on inheritance

Today’s class

• Exceptions
– A means for handling “exceptional” situations.

Back to our payroll app

• Recall from the Payroll class:

• Suppose the caller of addPerformer wants to do 
something else besides just printing an error 
message?

public void addPerformer (Performer P)
{
if (nPerf == MAXPERF)
System.err.println ("Payroll is full.”);

else {
performer[nPerf] = P;
nPerf++;

}
}

Exceptions

• Exceptions allow a method to tell the caller 
when an error has occurred
– Many times it is the calling function that knows 

what to do when an error occurs.
– Exceptions allow the caller to respond to the 

error rather than the method itself.
– Different callers may wish to respond to 

particular errors differently.

Exceptions
• When an error occurs, an exception will be 

thrown.
• When an exception is thrown, the exception gets 

passed to the calling function.
• This function may:

– Catch the exception, then perform whatever error 
handling is appropriate or

– Pass the exception up the call stack to the function that 
called it.

• If an exception reaches the main method and is not 
caught and handled, the program will terminate.
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Exceptions in Java

• In Java, an exception object, holding 
information about the error, is created and 
thrown.

• This object contains:
– A snapshot of the program when the error 

occurred
– An optional error message

Exceptions in Java
Object

Throwable

Exception Error

RunTimeExceptionOther 
Classes

Other 
Classes

Other 
Classes

Exceptions in Java

• Throwable
– top class in hierarchy

• Error
– Thrown when a very serious condition occurs
– Not expected to be caught or dealt with

• Exception
– Errors that can and should be caught

Exceptions in Java

• RunTimeException
– Exceptions that are not required to be caught.

• ArithmeticException
• IndexOutOfBoundsException
• NullPointerException

• All Exceptions that are not dervived 
from RunTimeException must either be 
caught or “declared”

Exceptions in Java
Object

Throwable

Exception Error

RunTimeExceptionOther 
Classes

Other 
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Other 
Classes

Not required to 
be caught

Throwing Exceptions

• A method can throw an Exception by using 
the throw clause.

• If a method throws a non-runtime 
exception, the definition of the function 
must “declare” that an exception can be 
thrown.

• When a method throws an exception, 
execution in that method ceases.
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Throwing Exceptions

• Payroll app 
– Let’s throw an exception when the Payroll is 

overfilled instead of issuing an error message

public void addPerformer (Performer P)
{
if (nPerf == MAXPERF)
System.err.println ("Payroll is full.”);

else {
performer[nPerf] = P;
nPerf++;

}
}

Throwing Exceptions
public class PayrollFullException extends Exception
{

public PayrollFullException (String msg) 
{super (msg);}

} 

public class Payroll {...
public void addPerformer (Performer P) 

throws PayrollFullException
{
if (nPerf == MAXPERF)
throw new PayrollFullException(“I am full”);

performer[nPerf] = P;
nPerf++;

}
}

Throwing Exceptions
/**
* Adds a performer to the payroll.  Will throw
* an exception if the payroll is currently full.
*
* @param P the performer to be added
* @exception PayrollFullException if payroll is full
*/

public void addPerformer (Performer P) 
throws PayrollFullException

{
if (nPerf == MAXPERF)
throw new PayrollFullException();

performer[nPerf] = P;
nPerf++;

}

Throwing Exceptions
/**
* Adds a performer to the payroll.  Will throw
* an exception if the payroll is currently full.
*
* @param P the performer to be added
* @throws PayrollFullException if payroll is full
*/

public void addPerformer (Performer P) 
throws PayrollFullException

{
if (nPerf == MAXPERF)
throw new PayrollFullException();

performer[nPerf] = P;
nPerf++;

}

Catching Exceptions

• You catch and handle exceptions by using the 
try/catch/finally statement
try {

statement(s) that can throw exceptions
}
catch (ExceptionClass E) {

statements that handles exception
}
finally {

cleanup code
}

Catching Exceptions
public void doUpdate (Performer P)
{

try {
addPerformer (P);

}
catch (PayrollFullException E)
{

// print out the error message
System.out.println (E.getMessage());

// do whatever else must be done…
}

}
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Catching Exceptions

• The last example will only catch Exceptions 
of class PayrollFullException

• One can catch Exceptions of multiple 
classes, each with a different handler by 
using the general form of the 
try/catch/finally statement.

Catching Multiple Exceptions

try {statement(s)}
catch (ExceptionClass1 name1) {…}
catch (ExceptionClass2 name2) {…}
catch (ExceptionClass3 name3) {…}
...

catch (ExceptionClassn namen) {…}
finally {cleanup code }

Catching Multiple Exceptions
• Of course, since all exceptions are 

subclasses of the Exception class, you can 
catch all exceptions:
try {statement(s)}
catch (Exception E) {…} 
finally {…}

In this case, exceptions of all types will be 
handled the same

Catching Multiple Exceptions

• When catching multiple exceptions in a 
single try/catch statement
– The more specific Exceptions must be listed 

first.

Catching Multiple Exceptions
public FooException extends Exception {…}
------------------------------------------------

try {
// call a function that throws a Foo Exception

}
catch (Exception E) { // do something}

catch (FooException F) { // do something else}

Will cause a compile error

Polymorphism and Exceptions

• Polymorphism does indeed work when 
declaring what exceptions are thrown by a 
function
public void doit (int a) throws 
Exception
{

if (a > 0) throw new FooException();
else throw new OofException();

}
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Polymorphism and Exceptions

• However, functions calling doit must catch 
exceptions declared by doit.

try {
doit(10);

}
catch (FooException E) { // do something}
catch (OofException F) { // do something else}

Would cause a compile error

Polymorphism and Exceptions

• This is okay

try {
doit(10);

}
catch (FooException F) { // do something}

catch (OofException O) { // do something else}
catch (Exception E) { // do even something else}

Catching exceptions

• How do you know what exceptions need to 
be caught?
– Check javadocs for objects whose methods you 

are calling
– Let the compiler do the checking.

Passing on exceptions

• A method M that calls a method P that 
throws an exception may choose not to 
catch the exception.
– The exception will get passed to the caller of 

M.
– If P throws an exception that is not a 
RunTimeException, M must declare that it 
too can throw an exception

Passing on Exceptions
public void doUpdate (Performer P)
{

addPerformer (P);
}

Would cause a compiler error since
addPerformer throws a
PayrollFullException and doUpdate 
doesn’t catch it.

Passing on Exceptions

Instead, if doUpdate wants to pass on this 
exception it must declare that it can throw a
PayrollFullException

public void doUpdate (Performer P) 
throws PayrollFullException

{
addPerformer (P);

}
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Back to Payroll

• Note that we could have left out the error 
check altogether.

• What would happen when the payroll gets 
overfilled?

public void addPerformer (Performer P)
{
performer[nPerf] = P;
nPerf++;

}

Finally finally

• The finally clause is optional, and is not 
frequently used

• It allows for cleanup of actions that occurred in 
the try block but may remain undone if an 
exception is caught

• Code in the finally block will get called regardless 
of whether an exception is caught or not

• Most useful when there is more than 1 exit from a 
function

Finally finally

try {
// some code that opens a window
openWindow();

}
catch (MildException M)
{

// do some handling, but okay to continue after 
// handling error

}
catch (BadException B)
{

// do some exception handling..but leave function
// since error is to severe to carry on
...
return;

}

// close the window opened in the try block
closeWindow();

Finally finally

try {
// some code that opens a window
openWindow();

}
catch (MildException M)
{

// do some handling, but okay to continue after 
// handling error

}
catch (BadException B)
{

// do some exception handling..but leave function
// since error is to severe to carry on
...
// must assure window gets closed
closeWindow();
return;

}
// close the window opened in the try block
closeWindow();

Finally finally
try {

// some code that opens a window
openWindow();

}
catch (MildException M)
{

// do some handling, but okay to continue after 
// handling error

}
catch (BadException B)
{

// do some exception handling..but leave function
// since error is to severe to carry on
...
return;

}
finally {

// close the window opened in the try block
// will get called no matter if an exception 
// is caught or not
closeWindow();

}

Summary

• Exceptions
• Throwable hierarchy
• Throwing exceptions
• Catching exceptions

– try / catch / finally

• Passing exceptions on
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Questions?

• Next Week:
– Project 1
– The last of the Payroll App
– File I/O using Java


