
1

Theatre Payroll App

Before we begin

• Questions?

• LDAP database…problems?

• Attendance

Something to think about for next class!

• Any theatre fans in the house?

When we last left our wannabe producer

• “I Want to be a Producer”
– Business manager for a theatrical production.
– Need a simple application that allows me to

determine the total amount spent on performers
salaries for a given week.

– Performers are paid a flat rate per performance
given.

When we last left our wannabe producer

• I Want to be a Producer”
– The app will need to:

• Be able to accept the number of performances given
by each performer

• Calculate the salary paid for each performer
• Determine the total salary paid for all performers

– Any thoughts on classes we might wish to
define to implement this?

Theatre Payroll app Classes

• Actor
– Represents an actor that needs to be paid

• Payroll
– Object that manages all actors that need to be

paid

• Javadocs for these classes are in the handout

2

Classes

• Recall that for classes, one can define
– Instance variables
– Class variables
– Methods

• Looking at the Javadocs, what are the
instance variables, class variables, and
methods for the Actor and Payroll classes?

The Actor Class

• Member variables
– Name
– nPerformances

• Class Variables
– PAYRATE

• Methods
– perform(int n) – sets number of performances
– calculatePay()

The Payroll Class

• Member variables
– performers – Array of actors managed by payroll
– nPerf – Number of actors being managed
– MAXPERF – The maximum number of actors the payroll can

handle.

• Methods
– addPerformer (Peformer P) – add a performer to the

payroll.
– calculateTotalPay()
– main(String args[]) – used to test

A look at the code

• First, consider style
/*
* Actor.java
*
* Version:
* $Id: $
*
* Revisions:
* $Log: $
*/

RCS

• These comments are here for RCS
• Revision Control System
• A means for managing document versioning
• Check-in / Check-out
• Why this is a good idea

– Software versioning
– Management of group software projects

A further look at the code

• More style
/**
* Simple Actor class. Represents an actor
* that needs to get paid
*
* @author Joe Geigel
*/
public class Actor {…

/**
*
* Constructor for Actor class
*
* @param name The actor's name
*/

3

Javadoc

• More than just good style, these comments
are used to create Javadocs
– If you comment your code well using these

conventions, you have instant documentation!
– Compare comments in code with attached

Javadocs.

Finally, a look at the code

• Actor – instance / class variables
/**
* The basic rate per perfomance.
* Common for all actors
*/
private static final double PAYRATE = 200.0;

/**
* The name of the actor
*/
private String myName;

/**
* The number of perfomances worked
*/
private int nPerformances;

More code

• Actor – constructor
/**
*
* Constructor for performer class
*
* @param name The actor's name
*/
public Actor (String name){

myName = name;
nPerformances = 0;

}

More code

• Actor – defining number of performances

/**
* Sets the number of performances for the week
*
* @param n number of performances played during
* the week
*/
public void perform (int n)
{

nPerformance = n;
}

Even More code

• Actor – calculating the weekly pay
/**
* Calculates and returns the weekly pay for the
* actor
*
* @returns The weekly pay
*/
public double calculatePay ()
{

return PAYRATE * nPerformances;
}

Now..to the payroll

• Payroll – instance / class variables
/**
* An array contain the managed actors
*/

private Actor actors[];

/**
* The number of actors currently being managed
*/
private int nActors;

/**
* The maximum allowable actors that can be managed
*/
private static final int MAXACTOR = 100;

4

More Payroll code

• Payroll -- constructor
/**
*
* Default constructor for the Payroll class
*
*/
public Payroll () {

actors = new Actor[MAXACTOR];
nActors = 0;

}

More payroll code

• Payroll – adding a Performer
/**
* Adds an actor to the payroll. Will issue an
* error message if the payroll is currently full.
*
* @param A the actor to be added
*/

public void addActor (Actor A)
{
if (nActors == MAXACTOR)
System.err.println ("Payroll is full.”);

else {
actors[nActors] = A;
nActors++;

}
}

The last of the payroll code

• Payroll – calculating total pay
/**
* Caculates the weekly pay for all of the actors
*
* @returns the total weekly pay
*/
public double calculateTotalPay()
{

double sum = 0.0;
for (int i=0; i < nActors; i++)

sum += actors[i].calculatePay();
return sum;

}

Testing the code

• Using the Payroll.main method/**
* A test program for the Payroll Class
*/

static public void main (String args[])
{

// Create a payroll
Payroll pay = new Payroll();

// Create some performers, define the number of
// performances for each then add them to the payroll
Actor A = new Actor("Nathan Lane");
A.perform (8);
pay.addActor (A);
...

// Calculate and print out the total weekly pay
System.out.println ("The total weekly pay for this week is " +

pay.calculateTotalPay());
}

Testing the code

• To run the test, issue the command:
– java Payroll

– The total weekly pay for this week is 4600.0

• Questions?

Adding to the Producer app

• The real producers liked the app so much
that they want to add musicians to the mix:
– However:

• Musicians get reimbursed for instrument rental as
well as getting a base pay per performance

• The pay rate for musicians is different than that for
actors.

5

Potential Problems

• Musicians
– Have data items that actors do not
– Determine their pay differently than actors

• Yet…
– The producer still needs to maintain pay info

about musician AND actors

Consider this code in payroll
/**
* Caculates the weekly pay for all of the actors
*
* @returns the total weekly pay
*/
public double calculateTotalPay()
{

double sum = 0.0;
for (int i=0; i < nActors; i++)

sum += actors[i].calculatePay();
return sum;

}

Adding musicians does not change this
algorithm!

What would be nice

• Keep the same code
• Let each object in the array compute it’s

pay based on the kind of object it is.

• We can achieve this using inheritance /
subclassing.

Something to think about for next class!

• We enhance the app while maximizing use
of the code already written by using

• Inheritance and Polymorphism…
– But that’s for next time.

• Questions?

