So You Want to Write a Ray Tracer

Checkpoint 7 – Tone Reproduction

Ray Tracing Assignment

• Goal is to reproduce the following

Whitted, 1980

Ray Tracing Assignment

• Seven checkpoints
 1. Setting the Scene
 2. Camera Modeling
 3. Basic Shading
 4. Procedural Shading
 5. Recursive Ray Tracing – Reflection
 6. Recursive Ray Tracing – Transmission
 7. Tone Reproduction

Check 7

• Goal is to take this from CG units to real units!

Checkpoint 7 – Tone Reproduction

Tone Reproduction

• Change your ray tracer so that it:
 1. Maps lighting units (0-1) to real lighting units
 2. Applies a tone reproduction operator to compress these simulated radiances to display radiances
Tone Reproduction

• The L_{max} argument
 – Will be used as the maximum luminance in the scene.
 – In other words, all lighting units are multiplied by L_{max}
 • A CG lighting value of 1 will be mapped to this maximum physical
 lighting value (unit is nits).
 • Other lighting values will be scaled linearly.
 • Note: You will now have illumination values that exceed 1.

• The L_{dmax} argument
 – Maximum luminance of the display device.
 – Use value of 100 nits.

So, instead of converting 0-1 to 0 – 255 for java or using 0-1 directly for openGL, you will
 – Multiply illumination color values by L_{max} to get illuminances $->[0, L_{\text{max}}]$.
 – Then, apply a tone reproduction operator to get pixel values.

I.e., we are post-processing the results of the rendering pipeline.

Two Tone Reproduction Operators

• You will implement two different tone reproduction operators:
 – Perceptual: Ward’s from Graphics Gems IV
 – Photographic: Reinhard, et al. in 2002

Ward Tone Reproduction

$$sf = \frac{1}{L_{\text{dmax}}} \left[\frac{1.219 + \left(\frac{L_{\text{dmax}}}{2} \right)^{0.4}}{1.219 + L_{\text{wa}}} \right]^{2.5}$$

• Ward’s TR Operator defines a scale factor:
 – $L_{\text{wa}} = sf \cdot L_{\text{wa}}$

• Where
 – L_{wa} = adaptation luminance
 – Average luminance in scene.

Applying to RGB

• One problem with tone reproduction is that it is tone reproduction and not color reproduction
 – Thus, we will apply the same operator to each of the R, G, B components, while in reality we should do a separate calculation for each component.
 – Related to this tone reproduction operator, you will
 • Calculate sf using a calculated luminance based on a combination of R, G, B components at each pixel
 • Then, we will apply sf to each R,G,B component.

Luminance

• Like in photography, the operators deal in luminances and not radiances.
Luminance

- quick and dirty approximation to pixel luminance given R, G, B:

$$L_w(x,y) = 0.27R(x,y)+0.67G(x,y)+0.06B(x,y)$$

- Note: L_w is in the range $[0, L_{max}]$

Log Average Luminance

- To find the log-average luminance of scene

$$\overline{L_w} = \exp\left(\frac{1}{N} \sum_{x,y} \log (\delta + L_w(x,y))\right)$$

- where
 - $L_w(x,y)$ = luminance at pixel x,y
 - N = number of pixels
 - δ = some small number (to prevent log going to infinity)

Ward Tone Reproduction

$$sf = \frac{1}{L_{max}} \left[\frac{1.219 + (L_{max}/0.04)^{2.25}}{1.219 + L_{max}^{2.25}} \right]$$

1. Scale R, G, B values by L_{max} for each pixel
2. Calculate log-avg luminance (L_w)
3. Calculate sf by setting $L_{wa} = L_w$
4. Final display colors (L_d) are the results of applying the sf calculated in step 2 to the R, G, B values from step 1.

Reinhard Tone Reproduction

- Basic idea:
 - Map the average scene luminance to Zone 5.
 - Map remaining luminances based on "photographic-like" response.

Reinhard Tone Reproduction

- Step 1
 - Obtain luminance values
 - Scale R, G, B values by L_{max} for each pixel
- Step 2
 - Calculate log-avg luminance (L_w)

- Hey, you already did this for Ward.

Reinhard Tone Reproduction

- Mimics Ansel Adam’s Zone System
 - http://photography.cicada.com/zs/emulator/
Reinhard Tone Reproduction

• Step 3
 – scale the luminance values R_s, G_s, B_s by mapping the key value to Zone V (18% gray)

$$L_s(x,y) = \frac{a}{T_k} L(x,y)$$

where
 - T_k = the key value
 - $L(x,y)$ = scene luminance at pixel x,y, i.e., your calculated R,G,B values scaled by L_{max}
 - $a =$ % gray for zone V; use $a = 0.18$
 - $L_s(x,y)$ = scaled luminance, i.e., R_s, G_s, B_s

• Step 4
 – Find the display luminances for R_d, G_d, and B_d based on film-like response

$$L_d(x,y) = \frac{L_s(x,y) * L_{dmax}}{1 + L_s(x,y)}$$

where
 - $L_s(x,y)$ = scaled luminance, i.e., R_s, G_s, B_s
 - L_d = display luminances, R_d, G_d, B_d
 - L_d is in the range $[0, L_{dmax}]$

• Step 5
 – Final pixel colors are determined by scaling L_d found in step 3 by L_{dmax}

Tone Reproduction

• Gamma

$$L_d = (L_{dmax} V)^{\gamma}$$

• In final step, for this assignment, we are assuming a gamma of 1.

Reinhard’s Results

[Reinhard, 2002]

Linear scaling
Loss of detail

Using TR Operator
[Reinhard, 2002]
Checkpoint 7

- To be posted to Web site
 - Six images produced by running your raytracer with three different values of \(L_{\text{max}} \) for EACH tone reproduction operator:
 - Lo-Range Lighting: \(L_{\text{max}} = 1 \) nit
 - Mid-Range Lighting: \(L_{\text{max}} = 100 \) nits
 - Hi-Range Lighting: \(L_{\text{max}} = 1000 \) nits
 - Tone Reproduction:
 - Ward’s Model
 - Reinhard’s Model
- Please label which is which.

Extra Extra

- For 5 points
 - Modify the Reinhard operator so that you can specify what luminance is to be used as the key value.
 - Constant value
 - Value at a pixel

Checkpoint 7

- Due dates:
 - Images to be posted to Web site
 - Midnight Nov 3rd.
 - Final raytracer code to be posted on mycourse
 - Midnight Nov 3rd
 - Code must be submitted to receive credit!
 - Include README with details to build
- Questions?