Ray Tracing

Lots of Logistics

- Happy 2003!
- · CS Has Moved
 - New Office:
 - 70-3527
 - Same phone and e-mail

Announcement

- CIA Session
 - Xerox Auditorium (Gleason Building 09)
 - January 14, 2003
 - 1pm 1:45pm

Announcement

- Computer Animation course
 - Looks like it will be a "go".
 - Focus on Algorithms and Techniques
 - Not <u>using</u> Maya, but algorithms to <u>build</u> Maya
 - Format
 - Much like this course (assignments, project, grad readings)
 - Topics
 - Keyframing / Interpolation
 - Kinematics
 - Articulated Figure MotionProcedural Animation
 - Animation and Audio (maybe)

Logistics

- Projects
 - 24 projects
 - Listing of projects now on Web
 - Presentations
 - Last 4 classes (Feb 18, 20, 25, 27)
 - 20 minutes / presentation
 - Sign up
 - E-mail me w/1st, 2nd, 3rd choice of times
 - First come, first served

Logistics

• Paper summaries on Ray Tracing – Any takers?

Before we begin...

• Any questions?

Computer Graphics as Virtual Photography Photographic real camera photo **Photography:** print (captures processing scene light) **Computer** 3D camera synthetic tone models model **Graphics:** reproduction image (focuses simulated lighting)

Today's Class

- Ray Tracing (Recursive Ray Tracing)
 Part I
 - Basics
 - Ray Geometry
 - Practical Considerations
 - Part II
 - So you want to write a ray tracer?
 - Assignment #1

Ray Tracing -- Basics

- Note:
 - Images and applets from SIGGRAPH
 - $-\ http://www.siggraph.org/education/materials/H \\ yperGraph/raytrace/rtrace0.htm$

Ray Tracing - Basics

- Light rays are traced from the eye, through a viewing plane, into scene to see what it hits.
- The pixel is then set to the color values returned by the ray.
- This color is a result of the object hit by the ray.

Ray Tracing - Basics

Sometimes you don't hit an object

Ray Tracing - Basics

Ray Tracing - Basics

- If you do hit an object, additional rays are spawned and sent into world to determine color at intersection point
 - Shadow ray
 - Reflected ray
 - Transmitted ray

 $I = \underbrace{g\varepsilon}_{\text{direct}} + \underbrace{g\varepsilon(Rg)}_{\text{1st scattering}} + \underbrace{g\varepsilon(Rg)^2}_{\text{2nd scattering}} + \underbrace{g\varepsilon(Rg)^3}_{\text{3rd scattering}} + \cdots$

 $I = I_{\text{local}} + k_r I_{\text{reflected}} + k_t I_{\text{transmitted}}$

Ray tracing actually gives you more since transmitted light is considered!

Ray Tracing Basics • Basic Ray Tracing -- Example Whited

Ray Tracing Basics

• Any questions on the basic idea behind ray tracing?

Ray Tracing - Ray Geometry

- Most of the computation in ray tracing is determining ray object-intersection
- When a ray intersects an object, we need to know:
 - Point of intersection
 - Normal of surface at point of intersection

Ray Tracing – Ray Geometry

- Use mathematical description of a ray and objects to determine intersection.
- Parametric representation of a ray:
 - Origin $X_o = (x_o, y_o, z_o)$ - Direction $X_d = (x_d, y_d, z_d)$
 - $-\operatorname{Ray}(t) = X_{o} + t X_{d}$
- If X_d is normalized, then t will be the distance from origin.

Ray Tracing – Ray / Sphere • The Sphere

- The Sphere
 - A sphere can be defined by:
 - Center (x_c, y_c, z_c)
 - Radius r
 - Equation of a point (x_s, y_s, z_s) on a sphere:

$$(x_s - x_c)^2 + (y_s - y_c)^2 + (z_s - z_c)^2 = r^2$$

Ray Tracing - Ray / Sphere
• Ray - Sphere Intersection
- Substituting ray equation for
$$(x_s, y_s, z_s)$$

- We get:
 $At^2 + Bt + C = 0$
- where
 $A = x_d^2 + y_d^2 + z_d^2$
 $B = 2(x_d(x_o - x_c) + y_d(y_o - y_c) + z_d(z_o - z_c))$
 $C = (x_o - x_c)^2 + (y_o - y_c)^2 + (z_o - z_c)^2 - r^2$

Ray Tracing - Ray / Sphere

• Ray - Sphere intersection

$$t = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Ray Tracing – Ray / Sphere • Note that if X_d is normalized • A = $x_d^2 + y_d^2 + z_d^2 = 1$ $t = \frac{-B \pm \sqrt{B^2 - 4C}}{2}$

Ray Tracing - Ray / Sphere

- If B² 4C is:
 - < 0 no real root, no intersection
 - -=0 one root, ray intersects at sphere's surface
 - ->0- two roots, ray goes through sphere. Use closest value.

Ray Tracing - Ray / Sphere

- Once we found a t₁ for the point of intersection, the actual point is:
 (x_i, y_i, z_i) = (x₀ + x_d * t_i, y₀ + y_d * t_i, z₀ + z_d * t_i)
- The normal at the point of intersection is: $- (x_n, y_n, z_n) = ((x_i - x_c)/r, (y_i - y_c)/r, (z_i - z_c)/r)$
- Questions?

Ray Tracing – Ray / Plane

- The plane (boss)
 - A plane can be defined by:A normal vector
 - And has the equation

$$Ax + By + Cz + D = 0$$

 where P_n = (A, B, C) gives the normal and if normalized (A² + B² + C² = 1), D will give the distance to any point on the plane from the origin.

Ray Tracing - Ray / Plane

• Ray - Plane Intersection - For plane with equation:

$$Ax + By + Cz + D = 0$$

- Plug in equation for ray and we get

$$t = \frac{-(Ax_o + By_o + Cz_o + D)}{Ax_d + By_d + Cz_d} = -(P_n \bullet X_0 + D)/(P_n \bullet X_d)$$

Ray Tracing - Ray / Plane

- If $(P_n \bullet X_d)$ is
 - -0 then ray is parallel to plane, no intersection
- If t is
 - < 0 then the ray intersects behind the origin...ignore!
 - > 0 calculate the point of intesection

Ray Tracing – Ray / Plane

- Once we found a t₁ for the point of intersection, the actual point is:
- $-(x_{i}, y_{i}, z_{i}) = (x_{0} + x_{d} * t_{i}, y_{0} + y_{d} * t_{i}, z_{0} + z_{d} * t_{i})$
- And we already have the normal at the point of intersection is:
 - P_n = (A, B, C)
- Questions?

Ray Tracing - Ray / Polygon

- Ray-Polygon Intersection
 - Find the plane in which the polygon sits
 - Find the point of intersection between the ray and the plane
 - If point of intersection is found, see if it lies within the boundaries of the polygon.

Ray Tracing - Ray / Polygon

- Find the plane in which the polygon sits - A plane can be defined by:
 - A normal vector
 - And has the equation Ax + By + Cz + D = 0
 - where $P_n = (A, B, C)$ gives the normal and if normalized $(A^2 + B^2 + C^2 = 1)$, D will give the distance to any point on the plane from the origin.

Ray Tracing - Ray / Polygon

- Find the point of intersection between the ray and the plane
 - Done previously

Ray Tracing - Ray / Polygon

- see if point of intersection lies within the boundaries of the polygon.
 - One algorithm:
 - Draw line from **P**_i to each polygon vertex
 - Measure angles between lines
 - If sum of angles between lines is 360°, polygon contains **P**_i

Ray Tracing - Practical Considerations

- · Problems with Ray Tracing
 - Object Ray Intersection
 - Ray traced images are point sampled
 - "Too sharp"
 - Sharp shadows
 - Sharp Reflection/Refraction
 - Aliasing

• Time for a break!