
1

So You Want to Write a Ray Tracer

Assignment #1

• Which is something you may wish to do
since it is Assignment #1

• In fact…

Assignment #1

• Goal is to be able to reproduce this:

Assignments

• Some advice:
– Choose either #1 (Ray tracing) or #2 (radioisity)
– #3 will be real time shading…

• Challenge will be getting environment set up

– #4 – Tone Reproduction
• Modification of #1 or #2

• In fact
– If you choose to do assignments 1 & 2, you need not do

any other.

Assignment #1

• Write a simplified recursive ray tracer for a
scene which may contain:
– Spheres
– Planar checkerboard rectangle
– A single point light source

• Use Phong illumination for color
calculations
– Light and color use 0-1 range

Assignment #1

• Program may be:
– Interactive – the final image is rendered to a

window on the screen
– Batch – the final image is rendered to a file.

• In either case, program should be involved:
– raytrace infile <outfile>

• Outfile required only for batch applications.

2

Assignment #1

• Infile – Describes scene to be rendered.
– Very simple formatted text file
– Format:

• Line 1: Camera Params (position, lookat, up, focal length,
frame size)

• Line 2: Light Parameters (position, rgb, ambient rgb)
• Line 3: Image Resolution and maxdepth
• Line 4: Background Color (rgb)
• Line 5: kr kt

• Lines 6-n: Object descriptions

Assignment #1

• Infile – Object descriptions / 2 lines per object
– Sphere

• S center(x,y,z) radius, isTransparent (0,1), index of refraction
• ambient rgb, diffuse rgb, specular rgb, ka, kd, ks

– Floor
• F vertex1 vertex2 vertex3 vertex4, cheksize
• ambient rgb1, diffuse rgb1, specular rgb1,ambient rgb2, diffuse

rgb2, specular rgb2, ka, kd, ks

• Normal for floor will always be (0, 1, 0)
• Floors are not transparent

Assignment #1

• Example infile
0 -10 0 0 0 0 0 1 0 5 10 5
10 10 10 0.7 0.7 0.7 0.2 0.2 0.2
480 240 5
0 0 1
0.33 0.33
S 0 0 0 3.0 1 1.0
0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 0.2 0.4 0.5
S 0 0 10 2.5 0 0.8
0.0 0.8 0.5 0.0 0.8 0.5 1.0 0.0 0.0 0.2 0.4 0.5
F –3 –2 –3 -3 –3 3 3 –3 3 3 –3 –3 0.5
1.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0

1.0 1.0 0.2 0.4 0.5

The algorithm

for(each pixel on the viewing area) {
for(each primitive in the world model) {

if(ray-pixel intersection) {
select the frontmost intersection;
recursively trace the relection and

refraction rays;
calculate color;

}
}

}

The algorithm The to-do list

1. Input processing – parse input file
2. Spawn a ray and send into scene

1. Define ray direction
2. Check for intersection
3. Calculate and return color

3. Display or save final image

3

Tips

• Coordinate spaces
– Can do in camera space or world space
– Camera space

• Must transform all objects/lights to camera space

– World space
• Must transform initial rays to world space

Tips – World Space

• Need only transform the location of 1st “pixel”
location on image plane and dx, dy, and dz as you
move across and down the plane

Tips – Camera Transformations

−
−
−

=

1000
zzyx

yzyx

xzyx

onnn
ovvv
ouuu

M

• (ux,uy,uz) are coordinates
of unit u vector w.r.t.
world space

• Similar for v, n,

• (ox, oy, oz) is the origin
of view space w.r.t world
space

Projection

• Note: Projection not required as this will be
done as part of the ray tracing process

=

1
z

y

x

n

v

u

p
p
p

M

w
P
P
P

Tips – Calculating Color

• Find point of intersection
– Good Safety tip – only consider intersections if

they occur past the image plane.
• Spawn rays

– Shadow
– Reflective
– Transmission

Shadow Ray

• For shadow rays, ray is spawned toward
each light source
– No need for point of intersection for each

object, just need to know if there is an
intersection.

4

Calculating Reflection Rays

iθ rθ

d

d

r
n

n
n

nd2 d 2a d r 2
•

+=+=

a

a

Calculating Transmission Rays

iη

rη

iθ

rθ

rrii θηθη sinsin =

Calculating Transmission Rays

iη

rη

rrii θηθη sinsin =
d

n

t

t Can be solved as:

2

22
ii))nd(1(-1n)n)n(dd(t

r

i

r η
θη

η
η •−

−
•−

=

Assumes d and n are
normalized

Tips – Creating images

• You don’t really need the full power of a
3D API to do ray tracing
– Just need the ability to write color values to

pixels
– Some of the matrix operation routines may be

helpful.

Tips – Writing image files

• C library
– Netppm

• Netpbm is a freeware toolkit/library for manipulation of
graphic images, including conversion of images between
a variety of different formats.

• http://netpbm.sourceforge.net/

• Java
– Java2D

• java.awt.image
• javax.imageio

– Java Advanced Imaging
• http://java.sun.com/products/java-media/jai/

Questions?

5

Assignments

• Grading
– Each assignment is worth 20 points:

• 5 points – for something that compiles
• 10 points – for something that runs incorrectly
• 15 points – for something that runs correctly
• 20 points – something that runs + extras

– Well structured and documented code
– Additional bells and whistles

Bells and Whistles

• 15 points
– Doing reflection rays

• 20 points
– Doing reflection and transmission

• Note
– Still must parse input correctly if transmission not done
– Please, please, please submit readable and documented

code!

Due dates

• If doing both assn 1 & 2
– Due Feb 6th

• If doing assn 1 but NOT assn 2
– Due Jan 23rd

