Sound and Animation

Paper Summaries

• Any takers?

• This week is the last week for paper summaries.

Announcements

• AniFest 04
 – Western Connecticut State University
 – http://149.152.225.94/festival04.html
 – Deadline for submission: Feb 28th
 – See me for more details

Announcements

• Want to learn Maya?
 – 2001-753
 – 3D Modeling in Maya
 – Designed for gamers and non-design majors
 – Contact: Marla Schwappe
 • mkspph@rit.edu

Grad Report

• Presentations:
 – February 11th – Next Wednesday.
• Written reports
 – Due by Feb 18th – last class.

Projects

• Final Reports
 – Note that final reports / code are SEPARATE grading components
 – Final reports/code are due on the last day of class (Feb 18th)
Projects

- Final Report
 - Textual description of your system
 - Sections
 - Problem/Project Description
 - Approach
 - Implementation
 - Overall System Architecture
 - Overall Program Architecture
 - Description of major data structures / objects
 - Results / User Documentation
 - Future Enhancements
 - Appendix – All Code listings

Assignments

- Assignment #1
 - Submitted and graded
- Assignment #2
 - Grace period ends today
- Assignment #3
 - Due Feb 11th (next Wednesday)

Plan for today

- Sound and Animation

About Monday’s class….

- Today: Sound and Animation
- Monday:
 - Project day
 - No lecture
 - Will be in office
- Wednesday: Grad Reports
- Following Week:
 - Project Presentations

Motivation Films

- Animations by Wayne Lytle
 - Visualization Guru at Cornell Theory Center
 - Quit to start Animusic in 1995

Motivational Film

- More Bells and Whistles (1990)
 - Lytle wrote the code for each band member
 - Motion is MIDI controlled
 - First of several Animusic pieces to be shown at SIGGRAPH
Motivational Film

• Pipe Dream (2001)
 – Animusic
 – Can’t See too much Animusic
 – Sound drives motion

Motivational Film

• Train Wreck (2003)
• Martin Burolla
• From last year’s animation class

Sound and Animation

• Issues in Sound and Animation
 – Sound Generation
 • What do we play?
 – Sound Synchronization
 • When do we play?
 – Spatial Sound
 • Where do we play

Sound

• What is sound?
 – From webster.com
 • mechanical radiant energy that is transmitted by longitudinal pressure waves in a material medium (as air) and is the objective cause of hearing

Sound

• What is sound?
 – Sound can be described as a 1 dimensional signal in time
 \[\text{sound} = f(t) \]

Remember this?

• Spatial vs frequency domains
 – Most well behaved functions can be described as a sum of sin waves (possibly offset) at various frequencies
 – Describing a function by the contribution (and offset) at each frequency is describing the function in the frequency domain
Sound

• A mathematical description of an audio signal:

\[f(t) = \sum_{i=0}^{\infty} A_i \sin(2\pi f_i t + \phi) \]

Contribution/amplitude frequency phase

Sound: Loudness

• Looking at sound in the temporal domain
 – Sound can be described as a 1 dimensional signal in time
 – Signal values represent amplitude.
 – We perceive the effect of amplitude as loudness.

Sound: Pitch

• Looking at sound in the frequency domain.
 – Humans “hear” sounds because of periodicities in the audio signal.
 – Humans perceive frequency as the sensation of pitch.
 – Humans can perceive pitches due to periodicities ranging from 20 – 20000 vibrations / sec (Hz).

Sound: Pitch

• Remember our discussion of CD audio
 – sampling rate of 44,100 samples/sec
 – \(\Delta = 1 \) sample every 2.26x10^-5 seconds
 – CDs can accurately reproduce sounds with frequencies as high as 22,050 Hz.

Sound: Timbre

• Tone quality of a sound
• Formally defined as
 – Characteristic of sound not due to amplitude and pitch.
• Also defined
 – Quality of tone that distinguishes between musical instruments
 – Sound shape
Sound: Timbre

- Timbre is the perception of the “spectral makeup” of a signal.
 - Adding non-fundamental frequency to the signal.
 - Another annoying audio applet – Timbre

Sound: Summary

<table>
<thead>
<tr>
<th>Physical Characteristic</th>
<th>Perceptual Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>Loudness</td>
</tr>
<tr>
<td>Frequency</td>
<td>Pitch</td>
</tr>
<tr>
<td>Spectral “shape”</td>
<td>Timbre</td>
</tr>
</tbody>
</table>

Sound Generation

- So how does one generate sound for animation?
 - Easiest means
 - Recording / Sampling -- Still the primary means for sound generation in the film industry
 - Using sampled sound – Still the primary means for sound use in games.

- When talking about digital (sampled sound)
 - The process of digitizing is called pulse code modulation (PCM).
 - PCM == sampled sound
 - WAV
 - AIFF
 - MP3 (compressed PCM)

Sound Generation

- Additive Synthesis
 \[f(t) = \sum_{i=0}^{\infty} A_i \sin(2\pi \omega_i t + \phi_i) \]
 - Define values for \(A_i \), \(\omega_i \), and \(\phi_i \)
 - Calculate sin and add
 - Alternately, do in the addition in frequency space.

- Subtractive Synthesis
 \[f(t) = \sum_{i=0}^{\infty} A_i \sin(2\pi \omega_i t + \phi_i) \]
 - Start with noise (equal energies at all frequencies)
 - Subtract contribution of frequencies from noise.
Sound Generation

- Granular Synthesis
 - Like particle system
 - Combine a multitude of sound “grains” into a sound events
 - Questions

Sound Synchronization

- Sound must be synchronized to the motion
 - Methods:
 - Motion driving sound
 - Defining Sound events
 - Deriving timbre from motion
 - Sound driving motion

Sound Synchronization

- Generating sound from physical simulation
 - Video examples

Sound Synchronization

- Sound driving motion
 - MIDI
 - Designed as a communication mode between sythesizers, samplers, instruments, computers
 - Sound events
 - Pitch
 - Devices
 - Used by Animusic in creating their videos

Spatial Sound

- Sounds (and listeners) have spatial positions
 - 3D sound
 - Making sounds appear as if they are emitted from a given position accounting for listener position
 - Reverberation
 - Filtering of sound based on reflection off of environment
 - Doppler Effect
 - Change in pitch due to moving objects

3D Sound

- Making sounds appear as if they are emitted from a given position accounting for listener position
 - Head related transfer functions (HRTF)
 - Audio cubes / surround sound
 - Strategic placing of speakers
3D Sound: HRTF

- a description of all the physical cues of sound localisation.
 - Implemented as filters
 - function of four variables: ie three space coordinates and frequency.
 - Determined by measurement

3D Sound: reverberation

- Like light, sound can be seen as traveling in 3D environment in rays.
- Unlike light, sound travels much slower
 - Speed of sound:
 - Speed of light

3D Sound: reverberation

- Reverberant sound is the collection of all the reflected sounds in an enclosed space
- Acoustics
- Reverb Time = time required for sound to decay one millionth of the original power

3D Sound: reverberation

- Examples
 - From BKL Consultants Ltd. (http://www.bkla.com/reverb.htm)
 - No reverb
 - 0.8 sec reverb time
 - 1.5 sec reverb time
 - 5.0 sec reverb time
3D Sound: Doppler effect

• Non-annoying applet

Sound: Putting It all Together

• Sound Rendering Video Examples

Sound: Putting It all Together

• Questions?

• Break!

Remember CGII: Procedural Shading

• Shade Trees [Cook84]
 – Shading calculated by combining basic functional operations.
 – Operations are organized in a tree.
 • Nodes - Operations
 • Children - operands
 – Result of shade tree evaluation is a color
 – Equiv to parse tree (compiler design)
 – Basis of Renderman shading language.
Remember CGII: Procedural Shading

- Shade Trees - example…copper

Remember CGII: Procedural Shading

- Basic ideas behind shade trees:
 - Describe textures / shading functionally
 - Using Parameters from 3D world

- Can we use a similar model for sound?

Timbre Trees

- Functional sound synthesis
 - Sound related functions
 - Periodic functions
 - Convolution
 - Noise
 - Filtering
 - Nodes for animation, 3d parameters

Timbre trees

- Nodes could also be used to simulate:
 - Reverberation
 - Delay
 - Spatial Sound
Timbre Trees

- What we failed to realize
 - Functional sound, unlike functional textures, was far from novel...
 - Quite popular in the Computer Music circles
 - Nyquist -- CMU
 - csound – MIT (basis of MPEG-4 Structured Audio)
 - However…

Genetic Texture

\[
\sin \left(\sqrt{-\left(\text{grad-direction} \left(\text{blur} \left(\text{if} \left(\text{hsv-to-rgb} \left(\text{warped-color-noise} \left(0.57, 0.73, 0.92\right) \cdot \left(1.85 \left(\text{warped-color-noise} x, y \cdot 0.02 \cdot 3.08\right) / (0.54 \left(0.73, 0.59\right) \cdot \left(1.06, 0.82, 0.06\right) / 3.1\right) \cdot 1.46 \cdot 5.9\right) \cdot \text{hsv-to-rgb} \left(\text{warped-color-noise} y \left(4.5 \left(\text{warped-color-noise} y \left(x, y \right) \cdot 2.4 \cdot 2.4\right) \cdot 0.02 \cdot 2.4\right)) x\right) \right) \right) \right) \right) \right) + 1.465.9)
\]

[Sim91]

Genetic Sound

- Since Timbre trees were nothing more than functional description of sound (using LISP expressions)
 - Experimentation with genetic manipulation was natural

Timbre Tree

- Video examples

Good news about this research

- Sound now integrated as part of rendering pipeline
 - DirectSound
 - VRML2.0
 - openAL

Bad news about this research

- Sound effects for motion pictures is still done using foley artists
Questions

• Next time
 – No lecture