

Welcome to Computer Animation

Algorithms and Techniques

First Things First

- This is 4003-590-04 / 4005-769-04
(Computer Animation – Algorithms & Techniques)
- I am Joe Geigel...your host!

Plan for this evening

- Logistics
- What is this course about?
- Requirements for course
- But first...
 - Student Information Forms

Logistics

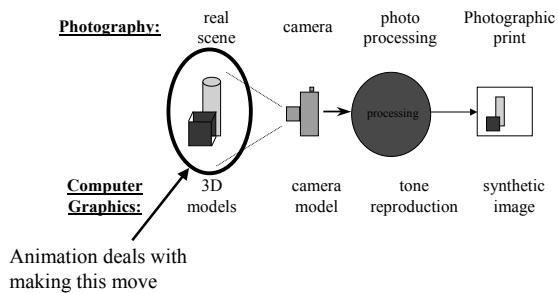
- Course Web Site:
 - <http://www.cs.rit.edu/~jmg/animation>
- Everything you need to know
 - Syllabus
 - Projects
 - Assignments
 - Schedules
 - Reading List
 - Diary
 - Top 10

Logistics

- Course Web Site:
 - <http://www.cs.rit.edu/~jmg/animation>
- Contact:
 - office hours: MWR 3-4 (or by appt)
 - Office: 70 (GCCIS) Rm 3527
 - e-mail: jmg@cs.rit.edu
 - phone: 475-2051
- Slides:
 - Will be available (in B&W – PDF) on Web site.

Logistics

- The LDAP database
 - Be sure that your e-mail is correct.
- myCourses
 - Links to readings
 - File dropoff


Logistics

- Textbooks
 - Computer Animation: Algorithms and Techniques by Parent
 - Physics for Game Developers by Bourg
 - Selected papers from CG literature
- Supplement lectures
 - Not necessary, but nice to have as references.

What is this course about?

Remember this from CGII?

Definition of animation

an·i·ma·tion (n)

a motion picture made from a series of drawings simulating motion by means of slight progressive changes in the drawings

Early Animation

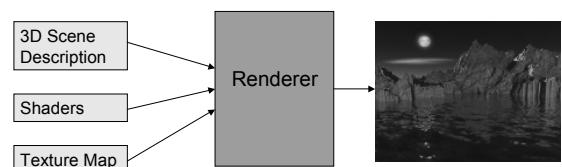
- The Zoetrope

Simple Animation

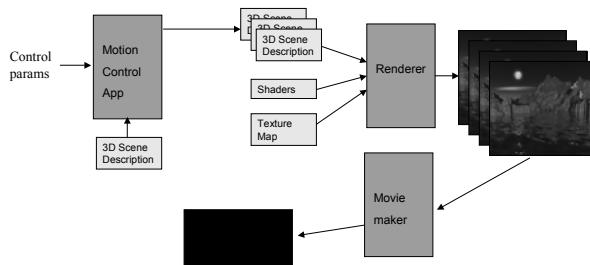
- The flip book

What is this course about?

- Techniques and algorithms for making items in our 3D world move.
 - Apply these algorithms by implementing them in code
- Prerequisites:
 - CGII / 2D Graphics Programming
 - Essentially: Proficiency in a 3D API.


What this course is not!

- A course on how to use Maya, 3DSM, or SoftImage to make animations
 - Instead, the course will cover the algorithms and technique you would need to know to build a tool like Maya, 3DSM, or SoftImage


Animation

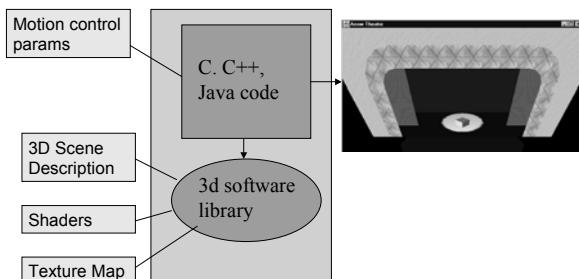
- Animation frames
 - The result of animation is a series of still images assembled together in time to give the appearance of motion.
- Real-time vs Batch

Programming Animation -- Batch

Programming Animation -- Batch

Projects – Renderers

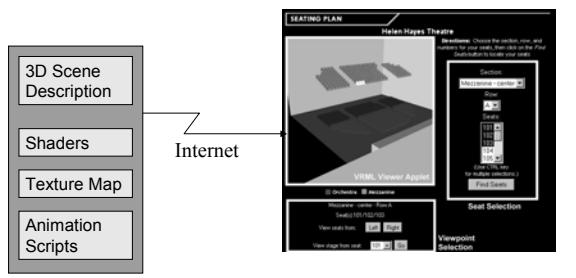
- Renderman
 - Created by Pixar...Used in Pixar films.
 - BMRT – Ray tracer / radiosity renderer that adheres to the Renderman Standard
 - Available for UNIX, Windows, SGI
 - Unavailable as of Summer 2002...but...
- Aqsis
 - Open Source Renderman renderer
 - Runs under Windows and Mac OS X.
- References
 - The Renderman Companion by Upstill
 - Advanced Renderman by Apodaca/Gritz


Projects – Renderers

- Persistence of Vision (POV)
 - Freeware Ray-Tracer
 - Available for most platforms (even Amiga!)

Projects – Renderers

- Radiance
 - “a suite of programs for the analysis and visualization of lighting in design.”
 - Physically-based
 - Emphasizes accuracy
- Available on UNIX platforms
- Reference
 - Rendering With Radiance by Ward Larson/Shakespeare


Programming Animation -- Realtime

Projects – Application

- 3D APIs
 - OpenGL
 - Standard – available for most platforms
 - Computer Graphics Using OpenGL, Hill
 - Java3D
 - For Java
 - The Java 3D API Specification, Sowizral, et al.
 - GL4Java
 - OpenGL wrappers in Java
 - <http://www.jausoft.com/gl4java.html>
 - DirectX / Direct 3D
 - For Microsoft Platforms
 - Any favorite references?

Programming Animation -- Web

Projects – Web Based

- Several proprietary formats
 - Viewpoint, MM Shockwave, Adobe Atmosphere
- VRML
 - ISO Standard for Web Based 3D Worlds
 - Latest incarnation is X3D
- Reference
 - The Annotated VRML 2.0 Reference Manual by Carey / Bell

Goals of course

- The range of Computer Animation is broad:
 - Can't cover everything in 10 weeks.
 - Topics:
 - Some we will cover in depth
 - Know well enough to code
 - Some we will cover broadly
 - Know where to look for more info
 - Some we won't get to at all.
 - Perhaps Computer Animation – Part II?

Topics

- In depth
 - Keyframing / Interpolation
 - Rigid Body Dynamics
 - Motion of Articulated Figures
 - Forward Kinematics
 - Inverse Kinematics
 - Walking
 - Behavioral Motion
 - Flocking

Topics

- Broad topics
 - Advanced character animation
 - Use of genetic algorithms
 - Procedural Gesturing
 - Levels of Control
 - Motion Capture
 - Particle Systems
 - Facial Animation
 - Animation and Sound

Topics

- Interesting topics we won't get to:
 - Good fodder for projects
 - Automatic Camera Control
 - Animated Lighting
 - Animation of Natural Phenomenon (Fire, Smoke, Plants)
 - Animating surfaces
 - Soft objects
 - Cloth Animation
 - Hair and Fur
 - Questions so far?

Goals of course

- Ulterior motive
 - Appreciation for the “classic” computer animated shorts
 - Start each class with an animation.
 - Jogle Top 10
 - The best classic animated shorts shown at SIGGRAPH
 - IMHO.
- Questions?

Grading

- Assignments
- Projects
- Reading of CG Literature (graduate only)

Grading

	Graduate	Undergrad
Assignments	35%	40%
Project	50%	60%
Readings	15%	Extra Credit

Assignments

- 4 Programming Assignments:
 - Corresponds to in-depth topics
 - Assn 1: Keyframing
 - Assn 2: Rigid Body Dynamics
 - A Night at the Pool Hall
 - Assn 3: Walking
 - A Walk in the Park
 - Assn 4: Flocking
 - Animation is for the boids
- Must do Assn #1. Choose 2 of the 3 remaining assignments

Assignments

- Ground rules
 - Can be realtime or batch (or Web based...beware!)
 - Can use the language / toolkit / API of your choice
 - OpenGL
 - DirectX
 - Java3D / Java2D / JAI
 - VRML / Web3D
 - Can use the Renderer of your choice
 - POV-Ray
 - Renderman (BMRT, aquis)
 - Radiance

Assignments

- Ground rules (cont'd)
 - Can work in groups of 2 (but not required)
 - Each team member will receive the same grade
 - Code should readable
 - Well documented
 - Use style guidelines of CS2/3/4
 - Deliverables
 - Code
 - User documentation
 - Tell me how to run and use your program

Assignments

- Grading
 - Each assignment is worth 20 points:
 - 5 points – for something that compiles
 - 10 points – for something that runs incorrectly
 - 15 points – for something that runs correctly
 - 20 points – something that runs + extras
 - Additional bells and whistles
 - Defined for each assignment

Assignment

- Posting Dates:
 - Keyframing: March 24th
 - Rigid Body Dynamics: April 7th
 - Walking: April 16th
 - Flocking: April 21st

Assignments

- Due Dates
 - Keyframing: April 9th
 - Rigid Body Dynamics: April 23rd
 - Walking: May 7th
 - Flocking: May 14th
- Late deliverables penalized 25% per week (unless otherwise arranged)
 - One week grace period.
- Questions?

Reading of CG Literature

- Grad only
 - Undergrads encouraged but not required.
- To familiarize yourself with the animation literature
- Each lecture will have a list of papers associated with it.
 - Papers electronically available via myCourses
 - Listed in READING LIST section of Web site

Reading of CG Literature

- Each class:
 - Choose 1 paper from list and summarize
 - Summary
 - 1-2 pages
 - Basic idea presented in the paper
 - Personal critique
 - Was the paper well written / understandable
 - Did you care for the topic presented
 - Did you like the work as a whole
 - Other comments

Reading of CG Literature

- Summaries
 - Due at the start of each lecture
 - No late submissions, please!
- Grading
 - ✓
 - ✓+
 - ✓-

Reading of CG Literature

- Have a favorite related CG paper not on the list? Let me know.
- Acceptable sources
 - SIGGRAPH Proceedings
 - Communications of the ACM
 - ACM Transactions on Graphics
 - IEEE Computer Graphics & Applications.
 - Others? See me first.

Reading of CG Literature

- Questions so far
- Break before discussing projects?

Relics from my attic

- The year was 1991
 - My state of the art desktop PC was:
 - 60MHz w/Intel 386 processor
 - Whopping 40M hard drive
 - The latest operating system: DOS 4.0
 - And...
- I took a course in Computer Animation!

Projects

- Purpose of the project
 - Hands on experience with programming computer animation
 - Study an area of computer animation, in depth

Projects

- Option 1:
 - Implementation of an animation algorithm or technique.
 - Implementation of an algorithm described in a research paper
 - Application of a techniques to a particular domain
 - Must involve programming
 - Batch – Final result of project is a single animation. (Using a renderer such as POV or Radiance).
 - Real-time – Use a 3D API to create an application involving a 3D scene
 - Web based – Use a Web based 3D scene description mechanism (e.g. VRML) to allow for viewing/interaction with a 3D scene using the Web

Projects

- About using an Animation package
 - E.g. Maya, 3DS Max, etc.
- Ground rules:
 - Okay for modeling
 - Not okay for animation
- Projects will be graded on how well they demonstrate the programming of an animation technique.
 - CS not art.
 - Functionality over production value

Projects

- Option 2:
 - Survey Paper
 - In-depth study into an area of animation
 - Survey the state of the art via summary of journal/conference papers.
 - At least 10 pages
 - Suggested for those planning to do Graduate study in the field of animation

Project

- Project Web site
 - Each project will have it's own Web site.
 - Encourage and enable others to see what you are doing.
 - Web site must be “set up” by mid-quarter report.
- Content
 - Up to you.
 - Suggestions
 - Description
 - Progress
 - Your app / animation
 - Final report

Projects

- Group projects
 - Accepted and encouraged.
 - Max: 3 members/group
 - Work must reflect number of members in a group
 - All team members will share the same grade for a project.
 - Proposals for group projects must include responsibilities of each group member.

Projects

- Helpful hints
 - Pick a topic that really interests you.
 - Extension of CGII project okay.
 - Choose a renderer/API that you really would like some experience with.
 - This is more than a project, it is an opportunity.
 - Be creative!
 - Have fun!

Projects

- Deliverables
 - Proposal – Due March 24th
 - Mid-Quarter Update (with Web site URL) – Due April 21st
 - Final Report – Due May 12th
 - Code – Due date of presentation
 - Presentation / Demonstration
 - Peer evaluations/ last 4 class periods
 - Team member evaluations
- Late deliverables penalized 25% per week (unless otherwise arranged)

Projects

- Proposal
 - Description of project
 - Work Plan
 - Responsibilities of group members
 - Demo/Presentation plans
- Proposals will be individually approved via e-mail.
- Need help? Just ask!

Projects

- Mid-Quarter Update
 - 1-2 page status report of progress
 - On track / behind / ahead
 - Too-much work?
 - Preliminary results (if any)
 - Last chance to change the scope of the project
 - URL of Web site

Projects

- Report / Documentation
 - Description of project
 - What techniques the project is set out to illustrate
 - Goals of the project
 - Approach Taken
 - In general -- How you went about solving the problem
 - Algorithms / techniques used (with references)
 - Implementation Details
 - High level system architecture (if application)

Projects

- Report / Documentation
 - Results
 - Animation (MPEG, AVI) if batch
 - User documentation (if real-time)
 - Future Enhancements
 - If I were to continue with this, what would you tackle next?

Projects

- Demo / Presentation
 - Show off your system and/or animation
 - Oral summary of your report
 - Use visuals (Powerpoint, HTML, PDFs)
 - Peer evaluations
 - Timing / dates TBD

Projects

- Team member evaluations
 - If you are a member of a team
 - Evaluate your team members

Projects

- Grading
 - Project worth 100 points
 - Proposal – 15 points
 - Mid-quarter Update – 10 points
 - Final Report – 20 points
 - Code – 30 points
 - Demo / Presentation – 25 points
 - Team member evaluations – bonus points

Projects

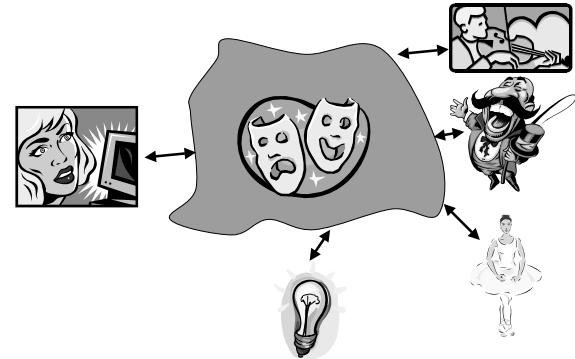
- So you're looking for project ideas...

Project Ideas

- Marla Schweipe
 - Visualization Studies – School of Imaging Arts & Science
 - mkspph@ritvax.isc.rit.edu
 - Interests:
 - Sign Language System
 - Graphics + Performance
 - Possible projects
 - Compositing of 3D with video footage
 - Scene manipulation from motion
 - Flock of birds – talk to Chris!

Project Ideas

- Andy Phelps
 - Information Technology
 - amp@it.rit.edu
 - <http://andysgi.rit.edu/>
 - Interests:
 - Gaming
 - Real time graphics


Project Ideas

- Susan Lakin
 - Photography -- **School of Photographic Arts and Sciences**
 - srlpph@rit.edu
 - Interests
 - Photography + Computers
 - Digital Photography
 - Animated Portraits
 - Possible project
 - Image Manipulator
 - Will be here next week to talk about her interests

My own personal interest

- My ultimate pipe-dream:
 - Virtual Theatre
 - A distributed computer system whereby performers, stage crew, and audience can be in physically separate places yet share in the same live theatrical performance.

Virtual Theatre

Virtual Theatre

- Possible projects:
 - Directing
 - Distributed actor control
 - High level actor direction (w/AI perhaps)
 - Real time realistic image synthesis
 - Perhaps using gaming technologies
 - Staging
 - Animated lighting effects
 - Animated stage effects (e.g. fog, rain, etc).
 - Synchronized sound effects.
 - Collaborative Virtual Environments

For next time

- Be sure that your e-mail in LDAP is correct.

For next time

- How animation is done in the real “Hollywood” world.
- Think about your projects...Proposals are due before you know it.

Oh, by the way

- In case you’re wondering

Remember

- Class Web Site:
 - <http://www.cs.rit.edu/~jmg/animation>
- Any questions?