Languages

- How are functional and imperative languages similar?
- How are they different?

- Has anybody noticed that all the languages we’ll study are non-ambiguous languages that have some language foundation (math, logic, English)

Prolog is All About

- Given a goal, find out if it’s true or not.
 - Note that this is going backwards from the production system we’re writing in Lisp.
- Prolog uses backward chaining (goal driven search)
- Many other production systems use forward chaining (data driven search)
- In Prolog, anything that can not be derived is false. This is known as the “closed world” assumption.

An Example

- Say I want to confirm/deny that “I am a descendant of Thomas Jefferson”.
 - He was born around 250 years ago and we assume 25 yr. per generation. We also assume that people general have more children than parents (say an average of 3 children)
 - The required path back would be around 10. If we assume 2 parents for each person, then there are 2^{10} possible states to search.
 - The required path forward would be around 3^{10}

Which one?

- Goal-driven search suggested if:
 - Goal-hypothesis is given in the problem and is easily formulated. Example: a theorem prover
 - There are a large number of rules that match the facts of the problem and thus produce an increasing number of conclusions or goals.
 - Problem data are not given but must be acquired by the problem solver. Example: a medical diagnosis system where diagnostic tests are ordered to confirm/deny a particular hypothesis

The other?

- Data-driven search is suggested if:
 - All or most of the data are given in the initial problem statement. Systems that analyze data fall into this category
 - There are a large number of possible goals, but only a few ways to use the facts. Example: DENDRAL, an expert system that finds the molecular structure of organic compounds based on their formula, mass spectrographic data, and knowledge of chemistry
 - It’s difficult to form a goal or hypothesis

Logic and Prolog

- Lecture based off of material available from:
 - http://computing.unn.ac.uk/staff/cgpb4/prologbook/node1.html
How do Production Systems Work?

- Condition-action pairs: Each pair describes a single chunk of problem-solving knowledge
- Working memory: A description of the current state of the work in a reasoning process.
- Recognize-act cycle

How might Logic Systems Work?

- Rules: Describe a single chunk of problem solving knowledge
- Facts: A description of the current state of the work in a reasoning process.
- Questions: Also called goals, they start a recognize-act cycle

The Goal

- Logical languages:
 - Allow the creation of rules and facts
 - Allow goals or questions to be asked
 - Have language support for finding solutions to the goals
 - Allow you to insert facts into your database
 - You don’t have to write the code to go through all actions and definitions to figure out what action occurs

Declarative vs. Procedural Programming

- Declarative:
 - The programmer must know the relationships between different entities
- Procedural:
 - The programmer must tell the computer how to do something

Prolog

- PROgramming in LOGic
- It’s pretty synonymous with the term “logical language”, although there are other languages such as Goedel and LPL

Note of Caution

- Prolog is difficult to master, because it doesn’t have the same structures as most other programming languages
A Review of Logic

<table>
<thead>
<tr>
<th>Language</th>
<th>What exists?</th>
<th>What states of knowledge?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional logic</td>
<td>Facts</td>
<td>True/False/Unknown</td>
</tr>
<tr>
<td>First-order logic</td>
<td>Facts, objects, relations</td>
<td>True/False/Unknown</td>
</tr>
<tr>
<td>Temporal logic</td>
<td>Facts, objects, relations, times</td>
<td>True/False/Unknown</td>
</tr>
<tr>
<td>Probability theory</td>
<td>Facts</td>
<td>Degree of belief 0..1</td>
</tr>
<tr>
<td>Fuzzy logic</td>
<td>Degree of truth</td>
<td>Degree of belief 0..1</td>
</tr>
</tbody>
</table>

Propositional Logic Semantics

- Each model specifies true/false for each proposition symbol
- Rules for evaluation truth with respect to a model m:
 - $\neg S$ is true iff S is false
 - $S_1 \land S_2$ is true iff S_1 is true AND S_2 is true
 - $S_1 \lor S_2$ is true iff S_1 is true OR S_2 is true
 - $S_1 \implies S_2$ is true iff S_1 is false OR S_2 is true
 - $S_1 \iff S_2$ is true iff $S_1 \implies S_2$ is true AND $S_2 \implies S_1$ is true

What We Would Like to Do

- If p stands for “all functional languages are icky” and p is true then we would like to be able to prove that “eLisp is icky”.
- This is where first order predicate logic (FOPL) comes in handy.

Predicate Logic Syntax

- Constants: eLisp, 2, RIT
- Predicates: Sister, $>$, Icky, ...
- Functions: Sqrt, Eat, ...
- Variables: x, y, a, b
- Connectives: \land, \lor, \neg, \implies, \iff
- Equality: $=$
- Quantifiers: \forall, \exists

Atomic Sentences

- Atomic sentences:
 - $\text{predicate}(\text{term}_1, \ldots, \text{term}_n)$
 - $\text{term}_1 = \text{term}_2$
- Term:
 - $\text{function}(\text{term}_1, \ldots, \text{term}_n)$
 - or constant
 - or variable
- Examples
 - $\text{Daughter}(\text{Lisa, Homer})$
 - $> (\text{Length}(\text{LeftLegOf}(\text{Homer})), \text{Length}(\text{LeftLegOf}(\text{M argo})))$

Representing in Prolog

- $\text{Thinks(Justin, Icky(eLisp))}$
- Ax smelly(x)
- $\text{thinks(Justin, icky(eLisp))}$
- smelly(X)

Variables are in upper case, values are in lower case, and the sentence ends with a “.” Both Justin and eLisp are constants and X is a variable.

Predicates may not be variables.
Constants (atoms)

- A constant is an atom or a number. A number is an integer or a real number. The rules for an atom are quite complicated:
 - Quoted item: 'anything but the single quote char'
 - Word: lower case letter followed by any letter, digit or _
 - Symbol: any number of {+,-,*,-,*,/,\,,\,^,<,>,=,\',~,:,.,?,@,#,$,&}
 - Special item: any of {[,],{},;,,!,\%}
- So the following are all atoms:
 - likes_chocolate, fooX23, ++*++, ::=, 'What Ho!'

Truth

- Sentences are true with respect to a model and an interpretation
- Models contain objects and relations among them
- Interpretation specifies values referred to for:
 - Constant symbols
 - Predicate symbols
 - Function symbols
- An atomic sentence predicate(term₁, ..., termₙ) is true if the objects referred to by term₁, ..., termₙ are in the relation referred to by predicate

Complex Sentences

- Complex sentences are made from atomic sentences using connectives

\[-S \quad S \land S₂ \quad S \lor S₂ \quad S \implies S₂ \quad S \iff S₂\]

- Examples:
 - Sibling(Pico, HAL) \implies Sibling(HAL, Pico)
 - (42,3) < (42,3)
 - (42,3) < (42,3)

Universal Quantification

\[\forall \langle \text{variables} \rangle \langle \text{sentence} \rangle \]

- "Everyone in Computer Science is smart"

\[\forall x \text{ In}(x, \text{ComputerScience}) \implies \text{Smart}(x)\]

- \(\forall x \text{ } P\) is equivalent to the conjunction of instantiations of \(P\)

\[\text{In}(\text{Matt}, \text{ComputerScience}) \implies \text{Smart}(\text{Matt})\]
\[\land \text{In}(\text{Dan}, \text{ComputerScience}) \implies \text{Smart}(\text{Dan})\]
\[\land \text{In}(\text{Tim}, \text{ComputerScience}) \implies \text{Smart}(\text{Tim})\]
\[\land \ldots\]

Universal Quantification Common Mistake

- Typically, \(\implies\) is the main connective with \(\forall\).
- Common mistake: using \(\land\) as the main connective

\[\forall x \text{ } \text{In}(x, \text{ComputerScience}) \land \text{Smart}(x)\]

- Means "Everyone in Computer Science and everyone is smart"

Existential Quantification

\[\exists \langle \text{variables} \rangle \langle \text{sentence} \rangle \]

- "Somebody in Computer Science is smart"

\[\exists x \text{ In}(x, \text{ComputerScience}) \land \text{Smart}(x)\]

- \(\exists x \text{ } P\) is equivalent to the disjunction of instantiations of \(P\)

\[\text{In}(\text{Matt}, \text{ComputerScience}) \land \text{Smart}(\text{Matt})\]
\[\lor \text{In}(\text{Dan}, \text{ComputerScience}) \land \text{Smart}(\text{Dan})\]
\[\lor \text{In}(\text{Tim}, \text{ComputerScience}) \land \text{Smart}(\text{Tim})\]
\[\lor \ldots\]
Existential Quantification

Common Mistake

- Typically, \land is the main connective with \exists.
- Common mistake: using \Rightarrow as the main connective
 \[
 \exists x \ (\text{In}(x, \text{ComputerScience}) \Rightarrow \text{Smart}(x))
 \]
- Is true if there’s anyone who’s not in Computer Science!

More about Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \forall y$ is the same as $\exists y \forall x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- There is a person who loves everyone in the world: $\exists x \forall y \text{Loves}(x, y)$
- Everyone in the world is loved by at least one person: $\forall x \exists y \text{Loves}(x, y)$

Quantifier Duality

- Each can be expressed using the other
 \[
 \begin{align*}
 \forall x \ Eats(x, \text{Mushrooms}) & \quad \rightarrow \quad \forall x \neg Eats(x, \text{Mushrooms}) \\
 \exists x \ Eats(x, \text{Vegetables}) & \quad \rightarrow \quad \exists x \neg Eats(x, \text{Vegetables})
 \end{align*}
 \]

Equality

- $\text{term}_1 = \text{term}_2$ is true under a given interpretation if and only if term_1 and term_2 refer to the same object
 - $1=2$ and $\forall x \ (\text{Sqrt}(x), \text{Sqrt}(x)) = x$ are satisfiable
 - $2=2$ is valid
- Definition of (full) Sibling in terms of Parent
 \[
 \begin{align*}
 \forall x, y \quad & \text{Sibling}(x, y) \iff \neg (x = y) \land \exists m, f \ (\neg (m = f) \land \\
 & \text{Parent}(m, x) \land \text{Parent}(f, x) \land \text{Parent}(m, y) \land \text{Parent}(f, y))
 \end{align*}
 \]

A Couple of Prolog Basics

- Starting Prolog: `pl`
- You probably want to type your facts/rules in a file and then load the file:
 - `[filename].`
 - Note: filename is really filename.pl
- Stopping the Prolog interpreter:
 - `halt`.
- Help on a topic: `help(topic)`.
- Edit a file `test.pl`: `edit(test)`.
- List child to screen: `listing(child)`.
- Trace descendant: `trace(descendant)`.
- Switch tracing off: `trace(descendant, -all)`.

English into First Order Logic

- Can you do these?
 - Every dog hates cats.
 - All purple mushrooms are tasty.
 - You can fool some of the people all of the time.
 - You can fool all of the people some of the time.
- `[answers discussed in class]`
How Do We Display Them in Prolog?

- Based on First order predicate logic
 - Uses a restricted version of clausal form called Horn clause form
 - \(q_1 \land q_2 \land \ldots \land q_n \rightarrow q_0 \) where each \(q_i \) and \(q_0 \) is an atomic sentence and all variables are universally quantified.

Multiple Clauses

- A clause is basically a prolog sentence (and ends with a period)
 - Example: `eats(snoopy, birdFood).`
 - How do we represent?: Snoopy eats bird food and wood.

Answer

- FOPL:
 - `Eats(Snoopy, BirdFood) \land Eats(Snoopy, Wood)`

- Prolog:
 - `eats(snoopy, birdFood), eats(snoopy, wood).`

What about?

- The square root of 25 is 5 or it is going to rain.
- Perl, Java, and eLisp are all languages.

Rules

- If a dog is wet and dirty, then he is smelly
- FOPL:
 - \(\forall x \text{ Wet}(x) \land \text{ Dirty}(x) \land \text{ Dog}(x) \rightarrow \text{ Smelly}(x) \)
- Prolog:
 - `smelly(X) :- wet(X), dirty(X), dog(X).`

- Only one goal is allowed at the head of the rule (before the `:-`)

Goals and Subgoals

- `smelly(X) :- wet(X), dirty(X), dog(X).`
 - In prolog `smelly(X)` is a goal and `wet(X)/dirty(X)/dog(X)` are subgoals
 - Why?
Represent These Statements

- In predicate logic and Prolog
 - All animals eat jelly beans.
 - Everyone loves Frodo.
 - Snoopy likes to eat Jessica's furniture.

Translate

- Two people live in the same house if they have the same address.
- Two people are siblings if they have the same parents.
- Someone is happy if they're healthy, wealthy, or wise.
- A dog is happy if he's healthy, wealthy, or wise.
 - Note that predicates are called "functors"

Proof Methods

- Model checking
 - Truth table enumerating
 - Heuristic search in model space
- Application of inference rules
 - Legitimate generation of new sentences from old
 - Proof: a sequence of inference rule applications. We can use inference rules as operators in a standard search algorithm.

Some Basic Prolog

- Facts
 - likes(joe, eLisp).
 - likes(john, eLisp).
 - likes(joe, mary).
 - likes(mary, books).
 - likes(mary, frankenstein).
 - likes(john, frankenstein).
- Questions
 - ?- likes(joe, eLisp).
 - Yes
 - ?- likes(mary, joe).
 - No
 - ?- likes(mary, frankenstein).
 - Yes
 - ?- dislikes(mary, joe).
 - No

Multiple Matches

- Facts
 - likes(joe, eLisp).
 - likes(john, eLisp).
 - likes(joe, mary).
 - likes(mary, books).
 - likes(mary, frankenstein).
 - likes(john, frankenstein).
- ?- likes(joe, X).

- If you type `;` Prolog will search for more matches
- Prolog searches the facts from top to bottom

How Do We Ask?

- Is there anything that John and Mary both like?
 - likes(john, X), likes(mary, X).
- In this case, Prolog will backtrack to find the right answer.
Rules

- How do we write?
 - Jack likes anyone who likes books.
 - \(\text{likes(jack, X), likes(X, books).} \)
 - \(\text{likes(jack, likes(X, books)).} \)
 - \(\text{likes(jack, X) :- likes(X, books).} \)
 - Jack likes anyone who likes books and fish.
 - Happy people are people who like themselves.
 - \(\text{happy(Person) :- likes(Person, Person).} \)

Recursion

- \(\text{descendant(X, Y) :- child(X, Y).} \)
- \(\text{descendant(X, Y) :- child(X, Z), descendant(Z, Y).} \)
- Avoid circular definitions:
 - \(\text{child(X, Y) :- parent(Y, X).} \)
 - \(\text{parent(X, Y) :- child(Y, X).} \)

Logically Correct, But...

- \(\text{descendant(X, Y) :- child(X, Y).} \)
- \(\text{descendant(X, Y) :- descendant(Z, Y), child(X, Z).} \)
- The above statement is logically correct, but may cause Prolog to go into an infinite loop, because of Prolog's left-to-right, depth-first order of evaluation.

Predicates and Operators

- \(=, \neq, <, \leq, >, \geq \)
- Arithmetic ops: +, -, *, etc.
- not

Prolog Variables

- Variables only refer to the same entity if they're inside the same clause.
- Note: logical variables are a bit different from other variables
 - \(X=1; X=2; \) will result in 2 in Java
 - \(X=1, X=2 \) won't work since the value X can only be one value

Prolog Functions

- Defining factorial:
 - You use the word “is” to do assignment
 - Example: A is 1*1.
 - The base case will be a separate rule from the regular case and will be stated separately.
 - Rather than a regular return type you normally have the return be a variable argument to the function