Accelerating Simulated Annealing for the Permanent and Combinatorial Counting Problems

Ivona Bezáková
Daniel Štefankovič
Vijay V. Vazirani
Eric Vigoda
Accelerating Simulated Annealing for the Permanent and Combinatorial Counting Problems

Talk outline:

1. The Permanent problem
2. Simulated annealing for the Permanent (MCMC algorithm by JSV '01)
3. New simulated annealing schedule
Permanent of an $n \times n$ matrix A

\[
\text{Per}(A) = \sum_{\pi \in S_n} \prod_{i=1}^{n} a_{i,\pi(i)}
\]

History & motivation:

- defined by Cauchy [1812]
- used in a variety of areas: statistical physics, statistics, vision, anonymization systems, ...
Permanent of an $n \times n$ matrix A

\[
\text{Per}(A) = \sum_{\pi \in S_n} \prod_{i=1}^{n} a_{i, \pi(i)}
\]

History & motivation:

• defined by Cauchy [1812]

• used in a variety of areas: statistical physics, statistics, vision, anonymization systems, ...
Permanent of an $n \times n$ matrix A

$$\text{Per}(A) = \sum_{\pi \in S_n} \prod_{i=1}^{n} a_{i, \pi(i)}$$

A - binary (entries 0 or 1):
adjacency matrix of a bipartite graph
Permanent of an $n \times n$ matrix A

$$\text{Per}(A) = \sum_{\pi \in S_n} \prod_{i=1}^{n} a_{i, \pi(i)}$$

A - binary (entries 0 or 1):
adjacency matrix of a bipartite graph
Permanent of an $n \times n$ matrix A

$$\text{Per}(A) = \sum_{\pi \in S_n} \prod_{i=1}^{n} a_{i,\pi(i)}$$

A - binary (entries 0 or 1):
adjacency matrix of a bipartite graph

The permanent counts the number of perfect matchings.
Previous Work on the Permanent Problem

[Kasteleyn '67]
poly-time for planar graphs (bipartite or not)

[Valiant '79]
#P-complete for non-planar graphs

[Jerrum-Sinclair '89]
fpras for special graphs, e.g. the dense graphs, based on a Markov chain by Broder '88

[Jerrum-Sinclair-Vigoda '01 & '05]
\(O^*(n^{26})\) fpras for any bipartite graph, later \(O^*(n^{10})\)

Our result:
\(O^*(n^7)\)
Broder chain

uniform sampling of perfect matchings of a given graph

At a perfect matching:
 • remove a random edge

At a near-matching:
 • pick a vertex at random
 - if a hole, try to match with the other hole
 - otherwise slide (if can)
Broder chain

uniform sampling of perfect matchings of a given graph

At a perfect matching:

- remove a random edge

At a near-matching:

- pick a vertex at random
 - if a hole, try to match with the other hole
 - otherwise slide (if can)
Broder chain

uniform sampling of perfect matchings of a given graph

At a perfect matching:
 • remove a random edge

At a near-matching:
 • pick a vertex at random
 - if a hole, try to match with the other hole
 - otherwise slide (if can)
Broder chain
uniform sampling of perfect matchings of a given graph

At a perfect matching:
 • remove a random edge

At a near-matching:
 • pick a vertex at random
 - if a hole, try to match with the other hole
 - otherwise slide (if can)
Broder chain

uniform sampling of perfect matchings of a given graph

At a perfect matching:
 • remove a random edge

At a near-matching:
 • pick a vertex at random
 - if a hole, try to match with the other hole
 - otherwise slide (if can)
Broder chain

uniform sampling of perfect matchings of a given graph

At a perfect matching:
 • remove a random edge

At a near-matching:
 • pick a vertex at random
 - if a hole, try to match with the other hole
 - otherwise slide (if can)
Broder chain

uniform sampling of perfect matchings of a given graph

At a perfect matching:
 • remove a random edge

At a near-matching:
 • pick a vertex at random
 - if a hole, try to match with the other hole
 - otherwise slide (if can)
Does the Broder chain mix in polynomial time?

State space

Exponentially smaller!

Perfect matchings
Theorem [JS]: Rapid mixing if perfect matchings polynomially related to near-perfect matchings.
Theorem [JS]: Rapid mixing if perfect matchings polynomially related to near-perfect matchings.

Idea [JSV]: *Weight the states* so that the *weighted ratio* is always polynomially bounded.
Theorem [JS]: Rapid mixing if perfect matchings polynomially related to near-perfect matchings.

Idea [JSV]: Weight the states so that the weighted ratio is always polynomially bounded.

\(n^2 + 1 \) regions, very different weight
Theorem[JS]: Rapid mixing if perfect matchings polynomially related to near-perfect matchings.

Idea[JSV]: Weight the states so that the weighted ratio is always polynomially bounded.

\[n^2 + 1 \text{ regions, each about the same weight} \]

Ideal weights
(for a matching with holes u,v):

\[\frac{\text{(# perfects)}}{\text{(# nears with holes u,v)}} \]
Good: A perfect matching sampled with prob. $1/(n^2+1)$

Bad: Computing ideal weights as hard as original problem?

Ideal weights
(for a matching with holes u,v):

$($# perfects$) / ($# nears with holes u,v$)$
Good: A perfect matching sampled with prob. $1/(n^2+1)$

Bad: Computing ideal weights as hard as original problem?

Solution: Approximate the ideal weights

Ideal weights
(for a matching with holes u,v):

$\frac{(\# \text{ perfects})}{(\# \text{ nears with holes } u,v)}$
Simulated Annealing

Solution: *Approximate* the ideal weights

Start with an easy instance,
gradually get to the target instance.

Ideal weights
(for a matching with holes u,v):

\[
\frac{\# \text{ perfects}}{\# \text{ nears with holes u,v}}
\]
Ideal weights
(for a matching with holes u,v):

\[
\frac{\text{(# perfects)}}{\text{(# nears with holes u,v)}}
\]

How?
Ideal weights
(for a matching with holes u,v):\[
(\text{# perfects}) / (\text{# nears with holes } u,v)
\]

How?
• start with the complete graphs (weights easy to compute)
Ideal weights
(for a matching with holes u,v):

\[
\frac{\text{(# perfects)}}{\text{(# nears with holes u,v)}}
\]

How?
- start with the complete graphs (weights easy to compute)
- fade away non-edges
Ideal weights
(for a matching with holes u,v):

\[
\frac{\text{(\# perfects)}}{\text{(\# nears with holes u,v)}}
\]

How?

- start with the complete graphs (weights easy to compute)
- fade away non-edges
Ideal weights
(for a matching with holes u,v):

\[
\frac{\text{(# perfects)}}{\text{(# nears with holes u,v)}}
\]

How?

• start with the complete graphs (weights easy to compute)
• fade away non-edges
Ideal weights
(for a matching with holes u,v):

\[
\frac{\text{(# perfects)}}{\text{(# nears with holes u,v)}}
\]

How?
- start with the complete graphs (weights easy to compute)
- fade away non-edges
Ideal weights
(for a matching with holes u,v):

\[
\text{(\# perfects) / (\# nears with holes u,v)}
\]

- start with the complete graphs (weights easy to compute)
- fade away non-edges
Ideal weights
(for a matching with holes u,v):

\[
\frac{\text{(# perfects)}}{\text{(# nears with holes u,v)}}
\]

How?

- start with the complete graphs (weights easy to compute)
- fade away non-edges
Ideal weights
(for a matching with holes u, v):

\[
\frac{\text{(# perfects)}}{\text{(# nears with holes u, v)}}
\]

How?

- start with the complete graphs (weights easy to compute)
- fade away non-edges
Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

How?
- start with the complete graphs (weights easy to compute)
- fade away non-edges
Ideal weights
(for a matching with holes u,v):

\[
\frac{\text{(\# perfects)}}{\text{(\# nears with holes u,v)}}
\]

How?

- start with the complete graphs (weights easy to compute)
- fade away non-edges
Ideal weights
(for a matching with holes u,v):

(\# \text{ perfects}) / (\# \text{ nears with holes u,v})

The edges have activities:

- 1 for a real edge
- \(\lambda \in [0,1] \) for a non-edge
How activities help?

• start with $\lambda = 1$

• compute corresponding weights $n! / (n-1)!$
How activities help?

- start with $\lambda = 1$
- compute corresponding weights $\frac{n!}{(n-1)!}$

Repeat until $\lambda < 1/n$!
Running Time [JSV]

Thm: The $(\lambda,\text{hole-weights})$-Broder chain mixes in time $O^*(n^6)$.

We need:

- $O^*(n^6)$ per sample
- $O^*(n^2)$ samples (boosting from 4-apx to 2-apx)
- $O^*(n^2)$ λ-decrements (phases)

$O^*(n^{10})$ total to get a 2-apx of the ideal weights
Running Time [BŠVV]

Thm: The \((\lambda,\text{hole-weights})\)-Broder chain mixes in time \(O^*(n^6)\).

We need:

<table>
<thead>
<tr>
<th>(O^*(n^4))</th>
<th>(O^*(n^6))</th>
<th>per sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O^*(n^2))</td>
<td>(O^*(n^2))</td>
<td>samples (boosting from 4-apx to 2-apx)</td>
</tr>
<tr>
<td>(O^*(n))</td>
<td>(O^*(n^2))</td>
<td>(\lambda)-decrements (phases)</td>
</tr>
<tr>
<td>(O^*(n^7))</td>
<td>(O^*(n^{10}))</td>
<td>total to get a 2-apx of the ideal weights</td>
</tr>
</tbody>
</table>
Reformulation of the problem

Promise: a set of polynomials of degree n such that

- polynomials have a low-degree term
- non-negative integer coefficients sum to $\leq n!$

Goal: λ-sequence (from 1 to $1/n!$) such that

for every polynomial ratio of consecutive values ≤ 2

Tricky part:

Don't know the coefficients!
Intuition

The worst case is the set of polynomials $x^j, j=1,\ldots,n$

Problem: no low-degree terms and x^n "dominates"

Fix: if the value of some x^j drops below $1/n!$, ignore the polynomial

TOTAL: $O(n \log^2 n)$ points
Conclusions

- new cooling schedule: a blackbox, applicable to other problems
- improved analysis of the weighted Broder chain
- interest of practical community

Open Problems

- other applications of the cooling schedule
- faster mixing result
- do we need n^2 weights?
- non-bipartite graphs