Approaches to Problem Solving

- greedy algorithms
- dynamic programming
- backtracking
- divide-and-conquer
- reduction to another problem
Interval Scheduling

Input: a set of time-intervals
Output: a subset of non-overlapping intervals
Objective: maximize # of selected intervals
Interval Scheduling

Input: a set of time-intervals
Output: a subset of non-overlapping intervals
Objective: maximize # of selected intervals

Idea #1: not work!
Select interval that starts earliest, remove overlapping intervals and recurse.
Interval Scheduling

Input: a set of time-intervals
Output: a subset of non-overlapping intervals
Objective: maximize # of selected intervals

Idea #2: Select the shortest interval, remove overlapping intervals and recurse.
Interval Scheduling

Input: a set of time-intervals
Output: a subset of non-overlapping intervals
Objective: maximize # of selected intervals

Idea #3: Select the interval with the fewest conflicts, remove overlapping intervals and recurse.

Select the interval with the fewest conflicts, remove overlapping intervals and recurse.
Interval Scheduling

Input: a set of time-intervals
Output: a subset of non-overlapping intervals
Objective: maximize # of selected intervals

Idea #4:
Select the earliest finishing interval, remove overlapping intervals and recurse.

works! we'll prove it
Interval Scheduling

INTERVAL-SCHEDULING((s₀, f₀), ..., (sₙ₋₁, fₙ₋₁))
1. Remain = {0,...,n-1}
2. Selected = {}
3. while (|Remain| > 0) {
4. \(k \in \text{Remain} \) is such that \(f_k = \min_{i \in \text{Remain}} f_i \)
5. Selected = Selected \(\cup \) {k}
6. Remain = Remain \(- \) {k}
7. for every i in Remain {
8. if \(s_i < f_k \) then Remain = Remain \(- \) {i}
9. }
10. }
11. return Selected

Select the earliest finishing interval, remove overlapping intervals and recurse.
Interval Scheduling

INTERVAL-SCHEDULING((s₀, f₀), ..., (sₙ₋₁, fₙ₋₁))

1. Remain = {0,...,n-1}
2. Selected = {}
3. while (|Remain| > 0) {
 4. k ∈ Remain is such that fₖ = minᵢ∈Remain fᵢ
 5. Selected = Selected ∪ {k}
 6. Remain = Remain - {k}
 7. for every i in Remain {
 8. if (sᵢ < fₖ) then Remain = Remain - {i}
 9. }
10. }
11. return Selected

Running time: $O(n^2)$ but can be implemented in $O(n \log n)$ + single pass through the sorted list.
Interval Scheduling

INTERVAL-SCHEDULING((s_0,f_0), ..., (s_{n-1},f_{n-1}))

1. Remain = {0,...,n-1}
2. Selected = {}
3. while (|Remain| > 0) {
4. k \in \text{Remain} \text{ is such that } f_k = \min_{i \in \text{Remain}} f_i
5. Selected = Selected \cup \{k\}
6. Remain = Remain - \{k\}
7. for every i in Remain {
8. if (s_i < f_k) then Remain = Remain - \{i\}
9. }
10. }
11. return Selected

Thm: Algorithm works.
Interval Scheduling

Thm: Algorithm works.

Proof: Let \(S \) be the solution returned by the algorithm.

Let \(S_{opt} \) be an optimum solution.

By contradiction, suppose \(|S| < |S_{opt}|\)

Let's compare \(S \) and \(S_{opt} \):

\[X \]

\[\text{Just} \]

Maybe it looks like this:

\[\text{Observation 1:} \]

\[\leftarrow \text{would not happen because our algo would have taken } S_{opt} \text{ instead of } I \text{ in step 4.} \]

\[\text{Observation 2:} \]

\[\text{Exchange of 4th intervals, agreement on first 3} \]

\[\text{Exchange argument: replace 1st yellow interval by 1st blue, to get another optimum solution: no overlaps, and } |S_{opt}| = |S_{opt}|_2 \]

\[\text{blue for yellow} \]

Which type of algorithm did we use?

next, do the same w. 2nd intervals (2nd blue finishes bef. 2nd yellow, exchange)

get \(S_{opt1} \), then exchange 3rd intervals, etc. until \(S_{opt} \) = \(S \)
Schedule All Intervals

Input: a set of time-intervals

Output: a partition of the intervals, each part of the partition consists of non-overlapping intervals

Objective: minimize the number of parts in the partition
Schedule All Intervals

Input: a set of time-intervals

Output: a partition of the intervals, each part of the partition consists of non-overlapping intervals

Objective: minimize the number of parts in the partition
Schedule All Intervals

Input: a set of time-intervals

Output: a partition of the intervals, each part of the partition consists of non-overlapping intervals

Objective: minimize the number of parts in the partition

Idea: run the previous algo, assign classes to 1st person, etc. remaining classes assign to remaining people.
Schedule All Intervals

Input: a set of time-intervals

Output: a partition of the intervals, each part of the partition consists of non-overlapping intervals

Objective: minimize the number of parts in the partition
Schedule All Intervals

Input: a set of time-intervals

Output: a partition of the intervals, each part of the partition consists of non-overlapping intervals

Objective: minimize the number of parts in the partition

Def: \(\text{depth} = \max \text{ (over time } t \text{) number of intervals that are “active” at time } t \)
Schedule All Intervals

Def: \textit{depth} = \text{max (over time } t \text{)} \text{ number of intervals that are “active” at time } t

Observation 1: Need at least \textit{depth} parts (labels).

\begin{verbatim}
SCHEDULE-ALL_INTERVALS ((s0,f0), ..., (sn-1,fn-1))
1. Sort intervals by their starting time
2. for j=0 to n-1 do
3. Consider = \{1,...,depth\}
4. for every i<j that overlaps with j do
5. Consider = Consider - \{ Label[i] \}
6. if |Consider| > 0 then
7. Label[j] = anything from Consider
8. else \text{ \{never happens, see previous slide\}}
9. Label[j] = nothing
10. return Label[]
\end{verbatim}
Thm: Every interval gets a real label. ✓

Corollary: Algo returns an optimal solution (i.e. it works!).

Running time: The algo below is $O(n^3)$ can be implemented in $O(n \log n + n \cdot \text{depth})$ or $O(n \log n)$ if sorted.

SCHEDULE-ALL_INTERVALS ((s_0, f_0), ..., (s_{n-1}, f_{n-1}))
1. Sort intervals by their starting time
2. for j=0 to n-1 do
3. Consider = \{1,...,\text{depth}\}
4. for every i<j that overlaps with j do
5. Consider = Consider − \{ Label[i] \}
6. if |Consider| > 0 then
7. Label[j] = anything from Consider
8. else
9. Label[j] = nothing
10. return Label[]
Weighted Interval Scheduling

Input: a set of time-intervals, each interval has a cost
Output: a subset of non-overlapping intervals
Objective: maximize the sum of the costs in the subset
Weighted Interval Scheduling

Input: a set of time-intervals, each interval has a \textit{cost}

Output: a subset of non-overlapping intervals

Objective: maximize the sum of the costs in the subset
Weighted Interval Scheduling

Input: a set of time-intervals, each interval has a cost
Output: a subset of non-overlapping intervals
Objective: maximize the sum of the costs in the subset
Weighted Interval Scheduling

Input: a set of time-intervals, each interval has a cost

Output: a subset of non-overlapping intervals

Objective: maximize the sum of the costs in the subset

WEIGHTED-SCHED-ATTEMPT((s_1,f_1,c_1),…,(s_n,f_n,c_n))
1. sort intervals by their finishing time
2. return WEIGHTED-SCHEDULING-RECURSIVE (n)

WEIGHTED-SCHEDULING-RECURSIVE (j)
1. if (j==0) then RETURN 0 // cost 0 w/ no intervals
2. k=j
3. while (interval k and j overlap) do k--
4. return max(c_j + WEIGHTED-SCHEDULING-RECURSIVE(k), WEIGHTED-SCHEDULING-RECURSIVE(j-1))
Weighted Interval Scheduling

Does the algorithm below work?

1. sort intervals by their finishing time
2. return \(\text{WEIGHTED-SCHEDULING-RECURSIVE} \ (n) \)

\[
\begin{align*}
\text{WEIGHTED-SCHED-ATTEMPT}((s_1,f_1,c_1),\ldots,(s_n,f_n,c_n))
\end{align*}
\]

1. if \((j==0)\) then RETURN 0
2. \(k=j\)
3. while (interval \(k\) and \(j\) overlap) do \(k--\)
4. return
\[
\max(c_j + \text{WEIGHTED-SCHEDULING-RECURSIVE}(k), \text{WEIGHTED-SCHEDULING-RECURSIVE}(j-1))
\]
Weighted Interval Scheduling

Does the algorithm below work? Yes

```
WEIGHTED-SCHED-ATTEMPT((s_1,f_1,c_1),...,(s_n,f_n,c_n))
1. sort intervals by their finishing time
2. return WEIGHTED-SCHEDULING-RECURSIVE (n)

WEIGHTED-SCHEDULING-RECURSIVE (j)
1. if (j==0) then RETURN 0
2. k=j
3. while (interval k and j overlap) do k--
4. return
   \[ \max(c_j + \text{WEIGHTED-SCHEDULING-RECURSIVE}(k), \text{WEIGHTED-SCHEDULING-RECURSIVE}(j-1)) \]
```
Weighted Interval Scheduling

Dynamic programming! I.e. memorize the solution for j

WEIGHTED-SCHED-ATTEMPT((s_1,f_1,c_1),…,(s_n,f_n,c_n))
1. sort intervals by their finishing time
2. return WEIGHTED-SCHEDULING-RECURSIVE (n)

WEIGHTED-SCHEDULING-RECURSIVE (j)
1. if (j==0) then RETURN 0
2. k=j
3. while (interval k and j overlap) do k--
4. return
 \[
 \max(c_j + \text{WEIGHTED-SCHEDULING-RECURSIVE}(k),
 \text{WEIGHTED-SCHEDULING-RECURSIVE}(j-1))
 \]
Weighted Interval Scheduling

Heart of the solution:

\[S[j] = \max \{ \text{cost of a set of non-overlapping intervals} \} \]

selected from the first j intervals

Another part of the heart: how to compute S[j]?

\[S[j] = \max \{ c_j + S[k], S[j-1] \} \]

the same as before, i.e. k is the largest index s.t. k.k, j-k intervals do not overlap

Finally, what do we return?

\[S[n] \]
Weighted Interval Scheduling

Heart of the solution:

\[S[j] = \text{max cost of a set of non-overlapping intervals selected from the first } j \text{ intervals} \]

```plaintext
WEIGHTED-SCHED ((s_1,f_1,c_1), ..., (s_n,f_n,c_n))
1. Sort intervals by their finishing time
2. Define S[0] = 0
3. for j=1 to n do
4. \( k = j \)
5. while (intervals k and j overlap) do k--
6. \( S[j] = \text{max}( S[j-1], c_j + S[k] ) \)
7. RETURN S[n]
```
Weighted Interval Scheduling

Reconstructing the solution:

WEIGHTED-SCHED ((s₁,f₁,c₁), ... , (s_n,f_n,c_n))
1. Sort intervals by their finishing time
2. Define S[0] = 0
3. for j=1 to n do
4. k = j
5. while (intervals k and j overlap) do k--
6. S[j] = max(S[j-1], c_j + S[k])
7. if S[j] = S[j-1]: pred[j] = j-1; else: pred[j] = k
8. \(\hat{j} = n \)
9. while (\(\hat{j} > 0 \)):
 if S[\(\hat{j} \)] ≠ S[\(\hat{j} - 1 \)]: output the j-th interval
 \(\hat{j} = \text{pred}[\hat{j}] \)
10. RETURN S[n]
Longest Increasing Subsequence

Input: a sequence of numbers
Output: an increasing subsequence
Objective: maximize length of the subsequence

Example: 2 3 1 7 4 6 9 5
Longest Increasing Subsequence

Input: a sequence of numbers

Output: an increasing subsequence

Objective: maximize length of the subsequence

Heart of the solution:

1. \(S[j] = \) the max length of an increasing subsequence of the first \(j \) elements, ending with \(j \)th element \(a_j \)

2. \(S[j] = 1 + \max_{k: k < j, a_k < a_j} S[k] \)

3. return \(\max_j S[j] \)
Longest Increasing Subsequence

Input: a sequence of numbers

Output: an increasing subsequence

Objective: maximize length of the subsequence

Heart of the solution:

\[S[j] = \text{the maximum length of an increasing subsequence of the first } j \text{ numbers ending with the } j\text{-th number} \]
Longest Increasing Subsequence

Input: a sequence of numbers $a_1, a_2, ..., a_n$
Output: an increasing subsequence
Objective: maximize length of the subsequence

Heart of the solution:

\[S[j] = 1 + \text{maximum } S[k] \text{ where } k < j \text{ and } a_k < a_j \]

What to return?
LONGEST-INCR-SUBSEQ \((a_0, \ldots, a_{n-1})\)
1. for \(j = 0\) to \(n-1\) do
2. \(S[j] = 1\)
3. for \(k = 0\) to \(j-1\) do
4. \(\text{if } a_k < a_j \text{ and } S[j] < S[k] + 1 \text{ then}\)
5. \(S[j] = S[k] + 1\)
6. return \(\max_j S[j]\)