Linear-time Median

Def: *Median* of elements $A = a_1, a_2, \ldots, a_n$ is the $\lceil n/2 \rceil$-th smallest element in A.

How to find median?

- sort the elements, output the elem. at $(n/2)$-th position
- running time? $O(n \log n)$
Linear-time Median

Def: **Median** of elements \(A = a_1, a_2, \ldots, a_n \) is the \((n/2)\)-th smallest element in \(A \).

How to find median?

- sort the elements, output the elem. at \((n/2)\)-th position
 - running time: \(\Theta(n \log n) \)
- we will see a faster algorithm
 - will solve a more general problem:
 \[
 \text{SELECT} \ (A, k) : \text{returns the } k\text{-th smallest element in } A
 \]
Linear-time Median

Idea: Suppose $A =$ $22, 5, 10, 11, 23, 15, 9, 8, 2, 0, 4, 20, 25, 1, 29, 24, 3, 12, 28, 14, 27, 19, 17, 21, 18, 6, 7, 13, 16, 26$

Looking for the k-th smallest elem.

$B = 11, 8, 20, 14, 19, 13$

$T(3)$

$\text{SELECT}(A, k)$:

0(1) { 0. if $n < 5$, then compute k-th smallest brute force (bubble sort) median $B = 13$ and return it $\in O(2)$
1. split A into groups of 5
2. for each group, find its median \leftarrow takes $O(1)$ steps per group (e.g. bubble sort 5 elms.)
3. create B, a list/ary of these medians
4. find the median of B \leftarrow let it be median $B = \text{SELECT}(B, \frac{n}{5})$
5. rearrange A so that elem. < median B come first, then elem. = median B, then elem. > median B

$T(3)$

$\text{SELECT}(A[1..i] \cup \ldots \cup A[j], k)$

0(1) { 6. let j_1, j_2 be the first and last index of median B in the rearranged A
7. if $k < j_1$, then find the k-th smallest elem. among the list j_1-1 elms. of A
8. if $j_1 \leq k < j_2$ then return median B
9. if $k \geq j_2$ then find the k-th smallest elem. among the elms. in rearranged A at indices $j_2+1 \ldots n$

$T(3)$
SELECT (A, k)
1. split A into \(n/5 \) groups of five elements
2. let \(b_i \) be the median of the \(i \)-th group
3. let \(B = [b_1, b_2, \ldots, b_{n/5}] \)
4. medianB = SELECT (B, B.length/2)
5. rearrange A so that all elements smaller than medianB come before medianB, all elements larger than medianB come after medianB, and elements equal to medianB are next to medianB
6. \(j = \) position of medianB in rearranged A (if more medianB’s, then take the closest position to \(n/2 \))
7. if \(k < j \) return SELECT (A[1\ldots j-1], k)
8. if \(k = j \) return medianB
9. if \(k > j \) return SELECT (A[j+1\ldots n], k-j)
Linear-time Median

Running the algorithm:

Orange: what the algo does
Blue: just me playing with the picture
Green: to be filled in later

White dots are not in A
Blue dots are in A
Black dots are in B
Blue square is what we want

Red dots are not relevant
Blue arrows are relevant
Yellow arrows are not relevant

The algorithm is:

1. Group elements of A into groups of 5.
2. For each group:
 a. Take the median of the group.
 b. Add the median to B.
3. Sort B.
4. Take the median of B.

The algorithm runs in linear time because:

- Grouping elements into groups of 5 takes linear time.
- Finding the median of a group of 5 elements takes constant time.
- Adding the median to B also takes constant time.
- Sorting B takes linear time.

Therefore, the total time taken by the algorithm is linear.
Linear-time Median

Running the algorithm:

Rearrange columns so that median B in the “middle.”

Recurrence: \[T(n) = T\left(\frac{\sqrt{2}}{7}n\right) + T\left(\frac{3}{4}n\right) + cn \quad \forall n \geq 5 \]
\[T(n) \leq c \quad \forall n < 5 \]
Linear-time Median

Recurrence: \[T(n) \leq T(n/5) + T(3n/4) + cn \] if \(n \geq 5 \)

\[T(n) \leq c \] if \(n < 5 \)

Claim: There exists a constant \(d \) such that \(T(n) \leq dn \).

This implies \(T(n) = O(n) \)

Pf (by induction):

BASE CASE: \(n < 5 \):

\[T(n) \leq c \] we want to show that \(T(n) \leq d \cdot n \) for some \(d \)

we know \(T(n) \leq c \leq d \cdot n \) where \(1 \leq n < 5 \)

IND. CASE: \(n \geq 5 \):

we want to show: \(T(n) \leq d \cdot n \)

we know: \(\forall m: \) (strong weak induction): \(T(m) \leq d \cdot m \) \(\forall m < n \)

we know: \(T(n) \leq T(n/5) + T(3n/4) + c \cdot n \)

\[\leq d \cdot \frac{n}{5} + d \cdot \frac{3n}{4} + c \cdot n \]

\[= \left(\frac{4d}{5} + \frac{3d}{4} + c \right) \cdot n = \left(\frac{19}{20} \cdot d + c \right) \cdot n \]

\[\leq d \cdot n \]

want: \(\frac{19}{20} \cdot d + c \leq d \) \(\Rightarrow \) \(c \leq \frac{d}{20} \) \(\Rightarrow d \geq 20c \)
Randomized Linear-time Median

Idea:
Instead of finding median B, take a random element from A.

SELECT-RAND (A, k)

1. $x = a_i$ where i is a random number from $\{1, \ldots, n\}$
2. rearrange A so that all elements smaller than x come before x, all elements larger than x come after x, and elements equal to x are next to x
3. j = position of x in rearranged A (if more x’s, then take the closest position to $n/2$)
4. if ($k < j$) return SELECT-RAND ($A[1\ldots j-1]$, k)
5. if ($k = j$) return median B
6. if ($k > j$) return SELECT-RAND ($A[j+1\ldots n]$, $k-j$)
Randomized Linear-time Median

Worst case running time: $O(n^2)$. but $O(n)$ expected runtime if keep selecting $x = \max A$ and $k=1$

SELECT-RAND (A, k)
1. $x = a_i$ where $i = a$ random number from \{1,...,n\}
2. rearrange A so that all elements smaller than x come before x, all elements larger than x come after x, and elements equal to x are next to x
3. $j =$ position of x in rearranged A (if more x’s, then take the closest position to $n/2$)
4. if ($k < j$) return SELECT-RAND (A[1...j-1], k)
5. if ($k = j$) return medianB
6. if ($k > j$) return SELECT-RAND (A[j+1...n], k-j)
Randomized Linear-time Median

Worst case running time: $O(n^2)$.

Claim: Expected running time is $O(n)$.
Master Theorem

Let \(a \geq 1 \) and \(b > 1 \) be constants, \(f(n) \) be a function and for positive integers we have a recurrence for \(T \) of the form

\[
T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n),
\]

where \(n/b \) is rounded either way.

Then,

- If \(f(n) = O\left(n^{\log a/\log b - \varepsilon}\right) \) for some constant \(\varepsilon > 0 \), then
 \[
 T(n) = \Theta\left(n^{\log a/\log b}\right).
 \]

- If \(f(n) = \Theta\left(n^{\log a/\log b}\right) \), then
 \[
 T(n) = \Theta\left(n^{\log a/\log b \log n}\right).
 \]

- If \(f(n) = \Omega\left(n^{\log a/\log b + \varepsilon}\right) \) for some constant \(\varepsilon > 0 \), and if \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \) (and all sufficiently large \(n \)), then
 \[
 T(n) = \Theta(f(n)).
 \]
Master Theorem

Let $a \geq 1$ and $b>1$ be constants, $f(n)$ be a function and for positive integers we have a recurrence for T of the form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n),$$

where n/b is rounded either way.

Then,

- If $f(n) = O\left(n^{\log a / \log b - \epsilon}\right)$ for some constant $\epsilon > 0$, then
 $$T(n) = \Theta\left(n^{\log a / \log b}\right).$$

- If $f(n) = \Theta\left(n^{\log a / \log b}\right)$, then
 $$T(n) = \Omega\left(n^{\log a / \log b}\right).$$

- If $f(n) = \Omega\left(n^{\log a / \log b + \epsilon}\right)$ for some constant $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ (and all sufficiently large n), then
 $$T(n) = \Omega(f(n)).$$