Linear-time Median

Def: **Median** of elements $A = a_1, a_2, \ldots, a_n$ is the $(n/2)$-th smallest element in A.

How to find median?

- sort the elements, output the elem. at $(n/2)$-th position

- running time? $O(n \log n)$

goal: $O(n)$ algorithm
Linear-time Median

Def: **Median** of elements $A = a_1, a_2, ..., a_n$ is the $(n/2)$-th smallest element in A.

How to find median?

• sort the elements, output the elem. at $(n/2)$-th position
 - running time: $\Theta(n \log n)$
• we will see a faster algorithm
 - will solve a more general problem:
 SELECT (A, k): returns the k-th smallest element in A
Linear-time Median

Idea: Suppose \(A = 22,5,10,11,23,15,9,8,2,0,4,20,25,1,29,24,3,12,28,14,27,19,17,21,18,6,7,13,16,26 \)

\[h=30 \]

- \(\text{SELECT}(A, k) \)
 - 0. if \(A, \text{length} \leq 5 \): find the \(k \)-th in constant steps and return it
 - 1. split \(A \) into groups of 5 elements
 - 2. for every group of 5, find its median (4 groups, constant steps per group)
 - 3. let \(B \) be an array of all these medians
 - 4. find the median of \(B \) (simply call \(\text{SELECT}(B, \frac{B, \text{length}}{2}) \))
 - let it be \(\text{medianB} \)
 - 5. rearrange \(A \) so that elements \(< \text{medianB} \) come first, then elements \(= \text{medianB} \) hollow, then elements \(> \text{medianB} \)
 - \(5, 10, 11, 9, 8, 2, 0, 4, 1, 3, 12, 6, 7, 13, 25, 16, 18, 21, 17, 19, 27, 14, 28, 24, 29, 25, 20, 15, 23, 22 \)
 - smaller than \(\text{medianB} \)
 - \(13 \)
 - \(\text{medianB} \)
 - \(> \text{medianB} \)
 - 6. let \(\text{posmedB1} = \text{pos} \) position of \(\text{medianB} \) in the rearranged \(A \) (\(\text{Arrangedsmall} \))
 - \(\text{posmedB2} = \text{last} \)
 - 7. if \(k < \text{posmedB1} \): return \(\text{SELECT}(\text{Arrangedsmall}, k) \)
 - 8. if \(k > \text{posmedB2} \): return \(\text{medianB} \)
 - 9. if \(k \leq \text{posmedB1} \) and \(k \geq \frac{\text{posmedB2}}{2} \): return \(\text{SELECT}(\text{Arrangedlarge}, k - \text{posmedB1}) \)

\[T(n) = T\left(\frac{n}{5}\right) + T(\frac{n}{2}) + cn \]

\[n \geq 5 \]

\[T(n) = \Theta(n) \]
Linear-time Median

SELECT (A, k)
1. split A into n/5 groups of five elements
2. let b_i be the median of the i-th group
3. let $B = [b_1, b_2, ..., b_{n/5}]$
4. $\text{medianB} = \text{SELECT} (B, B.\text{length}/2)$
5. rearrange A so that all elements smaller than medianB come before medianB, all elements larger than medianB come after medianB, and elements equal to medianB are next to medianB
6. $j = \text{position of medianB in rearranged A}$ (if more medianB’s, then take the closest position to n/2)
7. if ($k < j$) return $\text{SELECT} (A[1...j-1], k)$
8. if ($k = j$) return medianB
9. if ($k > j$) return $\text{SELECT} (A[j+1...n], k-j)$
Linear-time Median

Running the algorithm:

\[B = \begin{array}{c}
2, 5, 10, 11, 23
\end{array} \]

SELECT does not sort!

In sorted B is not necessarily first group

Pink: pretend B is sorted
(algo doesn't do this)

\[
\begin{align*}
\# \text{ elems} \leq \text{median } B & : \text{ at least } \frac{n}{4} \text{ such elem. } \Rightarrow \# \text{ elem. } > \text{median } B \text{ is at most } \frac{3}{4} n \\
\# \text{ elems} \geq 2 & : \quad \frac{n}{4} \quad < \quad \frac{2}{3} n
\end{align*}
\]
Linear-time Median

Running the algorithm:

Rearrange columns so that medianB in the “middle.”

Recurrence:

\[T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{3}{5}n\right) + cn \quad n > 5 \]

\[T(n) \leq c \quad n \leq 5 \]
Linear-time Median

Recurrence: \[T(n) < T(n/5) + T(3n/4) + cn \quad \text{if } n > 5 \]
\[T(n) < c \quad \text{if } n < 6 \]

Claim: There exists a constant \(d \) such that \(T(n) < dn \).
Randomized Linear-time Median

Idea:
Instead of finding median_B, take a random element from A.

SELECT-RAND (A, k)
1. \(x = a_i \) where \(i \) = a random number from \{1,...,n\}
2. rearrange A so that all elements smaller than \(x \) come before \(x \), all elements larger than \(x \) come after \(x \), and elements equal to \(x \) are next to \(x \)
3. \(j = \) position of \(x \) in rearranged A (if more \(x \)'s, then take the closest position to \(n/2 \))
4. if \(k < j \) return **SELECT-RAND** (\(A[1...j-1] \), \(k \))
5. if \(k = j \) return median_B
6. if \(k > j \) return **SELECT-RAND** (\(A[j+1...n] \), \(k-j \))
Randomized Linear-time Median

Worst case running time: $O(n^2)$.

SELECT-RAND (A, k)

1. $x = a_i$ where i is a random number from $\{1, \ldots, n\}$
2. rearrange A so that all elements smaller than x come before x, all elements larger than x come after x, and elements equal to x are next to x
3. $j =$ position of x in rearranged A (if more x’s, then take the closest position to $n/2$)
4. if $(k < j)$ return **SELECT-RAND** $(A[1 \ldots j-1], k)$
5. if $(k = j)$ return medianB
6. if $(k > j)$ return **SELECT-RAND** $(A[j+1 \ldots n], k-j)$
Randomized Linear-time Median

Worst case running time: $O(n^2)$.

Claim: Expected running time is $O(n)$.