#P-completeness: intro

Recall the definitions of the classes:

P: polynomial-time deterministic algo \((\text{on a TM, or any other high-level computational model})\)

NP: non-det. poly-time we can understand this as:
- non-det. guess a solution
- deterministically verify its correctness in poly-time

if we have a non-det. TM for a problem in NP \(\Rightarrow\) one of its paths goes to accepting state

NP-complete: hardest in NP, can be used to solve everybody else in NP \((\text{all comput. paths polynomial length})\)

A problem is NP-complete if
1) \(\in\) NP
2) is NP-hard \(\Rightarrow\) every problem in NP can be solved via the problem A

i.e. \(B \leq_p A\) polynomially-reducible to A
Class $\mathbf{\#P}$

A class for counting problems.

Def: given a non-det. TM where all comput. paths take a polynomial-time
then we count the number of accepting paths

$\mathbf{\#P}$ contains counting problems that have such a TM

Alternative view: count all solutions to a given problem, where a solution can be verified by a polynomial-time (det) verifier

Examples:

$\text{KNAPSACK} =$ given a set of n objects with weights W_i and cost c_i and a total weight W and a cost C, is it possible to choose objects with weight $\leq W$ and cost $\geq C$?

$\mathbf{\#KNAPSACK} =$ same input, count the number of possible subsets of the objects such that weight of the subset $\leq W$ and cost of the subset $\geq C$

i.e. count $\#$ solutions to the KNAPSACK problem

$\text{SAT} =$ given a formula ϕ, does there exist an assignment True/False to its variables so that

$\mathbf{\#SAT} =$ same input, count the number of possible satisfiable assignments

If is True ?
Class $\#P$

Note:
- Since $\text{SAT} \leq_p \#\text{SAT}$, then $\forall B \in \text{NP}$:
 - $B \leq_p \#\text{SAT}$
- (bec. $B \leq_p \text{SAT}$)
- Not in NP since it is not a decision problem
- But it is NP-hard

$\text{SAT} \leq_p \#\text{SAT}$
We say that a problem f is $\#P$-hard, if every problem in $\#P$ is polynomial-time Turing-reducible to f.

Turing-reducible: $g \leq_T f$, i.e. g is T-reducible to f iff we can solve g by having an access to a solver of f.

A picture for P, NP, NP-complete (assuming $P \neq NP$):

- P is contained in NP and NP-complete.
- NP-complete problems are contained in NP and NP-hard.
- $B \rightarrow A$ means that $B \leq_p A$.

Code-like solver for g (input):

1. Transform input and call the solver for f.
2. Get a value, say a, and feed another input into the solver for C.
4. Eventually produce result from numbers a, b, \ldots.

[Section 2.1]
Examples of #P-complete problems:

- #KNAPSACK
- #SAT
- #TRAV.SALESMAN
- etc.

Note: The following problem is OPEN:
If f is NP-complete, is its counting version #P-complete?
\(\text{it is in } \#P \)
perfect matchings

Consider perfect matchings in bipartite graphs:

- How fast can we find one perfect matching?
- How fast can we count them all?

- poly-time (Kirchhoff) in planar graphs
- in general (or bipartite) graphs
 \(\Rightarrow \) \(\#P \)-complete

poly-time, e.g. by using network flow algorithms
perfect matchings

#BipartitePM

Input: a bipartite graph G

Output: # perfect matchings in G

0/1-Perm

Input: an nxn 0/1 matrix A

Output: the permanent

\[
\text{per } A = \sum_{\sigma \in S_n} \prod_{i=0,1,...,n-1} a_{i,\sigma(i)}
\]

Thm (Valiant): 0/1-Perm (and #BipartitePM) is #P-complete.
perfect matchings

Thm (Valiant): 0/1-Perm (and \#BipartitePM) is \#P-complete.

Lemma A: \#Exact3Cover \leq_T \#WBipartiteMatch

Lemma B: \#WBipartiteMatch \leq_T \#WBipartitePM

Lemma C: \#WBipartitePM \leq_T \#BipartitePM

Note: we have to define the problems... we'll define only \#WBipartiteMatch and \#WBipartitePM.
perfect matchings

#WBipartiteMatch

Input: a bip. graph \(G \) with edge weights from \(\{1,-1,-5/3,1/6\} \)

Output: the “total weight” of the matchings in \(G \), i.e.,

\[
P_{\text{match}}(G) = \sum_{M, \text{a match. in } G} \prod_{e \in M} w(e)
\]

#WBipartitePM

- like #WBipartiteMatch but summing only over perf. match.

Note: #WBipartiteMatch and #WBipartitePM are not in \#P...
Lemma B: \(\text{#WBipartiteMatch} \leq_T \text{#WBipartitePM} \)

I.e., we want to show: Having a function for \(\text{#WBipartitePM} \), we can write a func \(\text{Bob} \) for \(\text{#WBipartiteMatch} \) s.t. our func takes poly-number of steps (not counting the running time of \(\text{Perfect Bob} \)).

Consider a weighted bipartite graph \(G \).

Take \(k \geq 0 \)

E.g. \(k = 2 \)

Connect \(G' \) (green & white)

\(\rightarrow \) a (weighted) bipartite graph (\(RUR' \) and \(BVB' \))

form the partition

Connect \(R' \) to \(B \)

(everybody to everybody)

Connect \(R \) to \(B' \)

all new (white) edges

weight 1

Connect \(B \) to \(B' \)

wants (Bob wants)
to compute

\(\sum \) weight of all matchings of \(G \)

r-k nodes

b-k nodes

b nodes

r nodes

\(\text{Perfect Bob} \) (weighted bipartite)
Consider a weighted bipartite graph G.

Take $k \geq 0$,

e.g. $k = 2$

There are k nodes on each side.

A perfect matching M' in G':

1) matches all vertices in R' and B', leaving k vertices in B and k vertices in R to match,

\Rightarrow corresponds to a k-matching in G, where weight of $M' = \sum$ weight of M (all new edges have weight 1)

2) if we call $\text{PerfectBob}(G')$ it returns $\sum_{\text{perfect match of } G'}$ weight of M'

$= (b-k)! (r-k)! \sum_{k\text{-matching of } G} \text{weight of } M$ given a k-matching M of G, we have this many possibilities to extend M into a perfect matching of G'

connect R' to B (everybody to everybody)

connect R to B'

all new (white) edges weight 1
2) if we call $\text{PerfectBob}(G')$ it returns \[
\sum_{\text{perf. match } M' \text{ of } G'} \text{ weight of } M'
\]
\[= (b-k)! (r-k)! \sum_{\text{k-match } M \text{ of } G} \text{ weight of } M \]
given a k-match M of G, we have this many possibilities to extend M into a perfect matching of G'

```python
func Bob (weighted bip. graph G)
    1. for
```