Perfect Matchings in a Planar Graphs

Recall the definitions of:

- **matchings**
 - given a graph G, a matching is a collection of edges of G pairwise non-adjacent.

- **perfect matchings**
 - a matching that covers all vertices (of size $n/2$), e.g., example above.

- **planar graphs**
 - a graph that can be drawn in a plane without edges crossing other edges, e.g., example above.

Recall the (monomer-)dimer problem from physics.

- **atoms** (nodes)
- **possible connections** (edges)
- **dimers**: molecules with 2 atoms
- **monomers**: single atoms (not in a molecule)

\equiv perfect match.
\equiv monomer-dimer config.
Fact 1.9:
Let \(M, M' \) be two perfect matchings, then \(M \cup M' \) forms a collection of single edges and even-length cycles.
Def:

Let $G \rightarrow$ be an orientation of G and let C be a cycle of G. C is **oddly oriented** if the odd number of edges in C disagrees with $G \rightarrow$.

$G \rightarrow$ is **Pfaffian** if, for every perfect matchings M, M', every cycle in $M \cup M'$ is oddly oriented.

Example: is $G \rightarrow$ Pfaffian?

perf. m. of G:

\[\begin{array}{c c c}
\text{1} & \text{2} & \text{3} \\
\text{4} & \text{5} & \text{6}
\end{array} \]

\Rightarrow thus, the $G \rightarrow$ above is Pfaffian.

Note: not every cycle in G, just every cycle in $M \cup M'$
Perfect Matchings in a Planar Graphs

Def: Skew adjacency matrix of $G\rightarrow$ is $A_s(G\rightarrow)$ where

$$a_{ij} = \begin{cases}
+1 & \text{if } (i,j) \text{ is an edge in } G\rightarrow \\
-1 & \text{if } (j,i) \text{ is an edge in } G\rightarrow \\
0 & \text{otherwise}
\end{cases}$$

$A_s(G)$ is a skew adjacency matrix.
Thm 1.11 (Kasteleyn):
For any Pfaffian orientation $G \rightarrow$,
\[
\# \text{ perfect matchings of } G = \sqrt{\det A_s(G \rightarrow)}
\]

Example:
\[
\begin{vmatrix}
0 & 1 & 0 & 1 \\
-1 & 0 & 1 & -1 \\
0 & -1 & 0 & 1 \\
-1 & 1 & -1 & -1
\end{vmatrix}
\]

\[
\begin{vmatrix}
0 & 1 & 0 & 1 \\
-1 & 0 & 1 & -1 \\
0 & -1 & 0 & 1 \\
-1 & 1 & -1 & -1
\end{vmatrix}
\]

Thm 1.14: Every planar graph has a Pfaffian orientation (and it can be easily constructed).

Note: It is not known whether the problem of deciding if a graph has a Pfaffian orientation is in P nor whether it is NP-complete.
Def: Let G be obtained from G by replacing every edge by \leftrightarrow. An even cycle cover of G is a collection of even cycles that cover every vertex exactly once.

Lemma 1.12: There is a bijection between (ordered) pairs of perfect matchings and even cycle covers of G.

Notice: if X is a perfect matching in G, then the number of even cycle covers of G is X^2.

Thus, if we show that the number of even cycle covers of G is $\det(A_s(G))$, where G is Pfaffian, then it follows that

$$\# \text{ perf. match. in } G = \sqrt{\det(A_s(G))}.$$
Thm 1.11: If $G \rightarrow$ Pfaffian, then

$$(\# \text{ perfect matchings of } G)^2 = \det A_s(G \rightarrow)$$

Proof:
Lemma 1.13: Let $G\to$ be a connected planar digraph (drawn in plane) with all faces except outer having an odd number of clockwise oriented edges. Then, in any (simple) cycle C, the number of clockwise edges is opposite parity as the number of vertices inside C.

In particular, $G\to$ from Lemma 1.13 is Pfaffian.
Lemma 1.13: Let $G\rightrightarrows$ be a connected planar digraph (drawn in plane) with all faces except outer having an odd number of clockwise oriented edges. Then, in any (simple) cycle C, the number of clockwise edges is opposite parity as the number of vertices inside C.

Proof:

Let $v = \# \text{ vertices inside } C$

$k = \text{length of } C$

$c = \# \text{ clockwise edges in } C$

$f = \# \text{ faces inside } C$

$e = \# \text{ edges inside } C$

$c_i = \# \text{ clockwise edges in component } i \text{ inside } C$
Pfaffian orientations in planar graphs

Thm 1.14: Every planar graph has a Pfaffian orientation.

Proof: