Linear-time Median

Def: Median of elements $A = a_1, a_2, ..., a_n$ is the $[n/2]$-th smallest element in A.

How to find median?

- sort the elements, output the elem. at $[n/2]$-th position
- running time? $O(n \log n)$
Linear-time Median

Def: Median of elements $A=a_1, a_2, \ldots, a_n$ is the $(n/2)$-th smallest element in A.

How to find median?

- sort the elements, output the elem. at $(n/2)$-th position
 - running time: $\Theta(n \log n)$
- we will see a faster algorithm
 - will solve a more general problem:

 $\text{SELECT} (A, k)$: returns the k-th smallest element in A
Linear-time Median

Idea: Suppose \(A = \{22, 5, 10, 11, 23, 15, 9, 8, 2, 0, 4, 20, 25, 1, 29, 24, 3, 12, 28, 14, 27, 19, 17, 21, 18, 6, 7, 13, 16, 26\} \)

1. If \(n \) (number of elements) \(\leq 5 \), then sort \(A \) using bubblesort and return the \(k \)-th smallest elem.
2. Split \(A \) into 5 tuples.
3. Find the median of each tuple and add all these elements to \(B \).
4. Find the median of the medians: \(x = \text{SELECT}(B, \frac{n}{5}) \).
5. Move \(x \) so that elements \(\leq x \) go left, then go elem. = \(x \), then elem. \(> x \) for us.
6. If \(k < j \) then return \(\text{SELECT}(\text{ArcaR}[:j], k) \).
7. If \(k > j \) then return \(\text{SELECT}(\text{ArcaR}[j+1:], n) \), rearranged \(A \):
8. If \(k=j \) then return \(x \).

Note: change the pseudo code to reflect multiple possible \(x \)'s
Linear-time Median

SELECT (A, k)
1. split A into n/5 groups of five elements
2. let b\textsubscript{i} be the median of the i-th group
3. let B = [b\textsubscript{1}, b\textsubscript{2}, ..., b\textsubscript{n/5}]
4. medianB = SELECT (B, B.length/2)
5. rearrange A so that all elements smaller than medianB come before medianB, all elements larger than medianB come after medianB, and elements equal to medianB are next to medianB
6. j = position of medianB in rearranged A (if more medianB’s, then take the closest position to n/2)
7. if (k < j) return SELECT (A[1...j-1], k)
8. if (k = j) return medianB
9. if (k > j) return SELECT (A[j+1...n], k-j)
Linear-time Median

Running the algorithm:

Sorting only for the analysis
(the algorithm does not sort B)

When making a recursive call on elements larger than \(x \), there are at most \(\frac{3}{4}N \) such elements.

Same for the recursive call on elements smaller than \(x \).
Linear-time Median

Running the algorithm:

Rearrange columns so that medianB in the “middle.”

Recurrence:

\[T(n) \leq T\left(\frac{n}{3}\right) + T\left(\frac{3n}{4}\right) + cn \quad \forall n > 5 \]

\[T(n) \leq c \quad \forall n \leq 5 \]
Linear-time Median

Recurrence: \(T(n) \leq T(n/5) + T(3n/4) + cn \) if \(n > 5 \)
\(T(n) \leq c \) if \(n < 6 \)

Claim: There exists a constant \(d \) such that \(T(n) \leq dn \).

Base Case: \(n \leq 5 \)
want to show \(T(n) \leq dn \)
know that \(T(n) \leq c \leq d \cdot n \)
for \(d \geq c \)

Inductive Case: \(n > 5 \)
want to show \(T(n) \leq dn \)
by IH we know \(T(m) \leq dm \) \(\forall m < n \)
know: \(T(n) \leq T(n/5) + T(3n/4) + cn \) (IH)
\(\leq d \cdot \frac{n}{5} + d \cdot \frac{3n}{4} + cn = \)
\(= \left(\frac{19}{20} d + c \right) \cdot n \)
want \(\leq d \cdot n \)

choose \(d \) so that this holds: \(\frac{19}{20} d + c \leq d \)

Just showed that \(T(n) \leq 20c \cdot n \)
\(= O(n) \)
Randomized Linear-time Median

Idea:
Instead of finding medianB, take a random element from A.

SELECT-RAND (A, k)
1. $x = a_i$ where i = a random number from $\{1, \ldots, n\}$
2. rearrange A so that all elements smaller than x come before x, all elements larger than x come after x, and elements equal to x are next to x
3. $j =$ position of x in rearranged A (if more x’s, then take the closest position to n/2)
4. if ($k < j$) return SELECT-RAND (A[1…j-1], k)
5. if ($k = j$) return medianB
6. if ($k > j$) return SELECT-RAND (A[j+1…n], k-j)
Randomized Linear-time Median

Worst case running time: \(O(n^2) \).

SELECT-RAND \((A, k)\)

1. \(x = a_i \) where \(i = \) a random number from \(\{1, \ldots, n\} \)
2. rearrange \(A \) so that all elements smaller than \(x \) come before \(x \), all elements larger than \(x \) come after \(x \), and elements equal to \(x \) are next to \(x \)
3. \(j = \) position of \(x \) in rearranged \(A \) (if more \(x \)'s, then take the closest position to \(n/2 \))
4. if \(k < j \) return SELECT-RAND \((A[1\ldots j-1], k)\)
5. if \(k = j \) return medianB
6. if \(k > j \) return SELECT-RAND \((A[j+1\ldots n], k-j)\)
Randomized Linear-time Median

Worst case running time: $O(n^2)$.

Claim: Expected running time is $O(n)$.
Master Theorem

Let \(a \geq 1 \) and \(b > 1 \) be constants, \(f(n) \) be a function and for positive integers we have a recurrence for \(T \) of the form

\[
T(n) = a \cdot T(n/b) + f(n),
\]

where \(n/b \) is rounded either way.

Then,

\[
O(n^{\log_a b - e})
\]

- If \(f(n) = O(n^{\log_a b - e}) \) for some constant \(e > 0 \), then
 \[
 T(n) = \Theta(n^{\log_a b}).
 \]

\[
\Omega(n^{\log_a b + e})
\]

- If \(f(n) = \Omega(n^{\log_a b + e}) \), then
 \[
 T(n) = \Omega(n^{\log_a b \log n}).
 \]

- If \(f(n) = \Omega(n^{\log_a b + e}) \) for some constant \(e > 0 \), and if \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \) (and all sufficiently large \(n \)), then
 \[
 2f(\frac{n}{4}) = 2 \cdot c \cdot \frac{n}{4} \leq c_2 \cdot n \quad \checkmark
 \]
 \[
 T(n) = \Theta(f(n)).
 \]