Complexity

We discussed several algorithms for decidable problems.

Example:

The membership problem for context-free grammars ("given a CFG G and a string x, is x in L(G)?")

We gave an algorithm which took about $|P|^2n$ steps (it was trying all possible derivations of length 2n for a grammar in the Chomsky normal form and $|x|=n$).

We also said that there exists an algorithm (Cocke-Younger-Kasami, also known as CYK) that takes about n^3 steps.

Which algorithm is better?

\textit{Second (faster)}
We say that a language (problem) \(L \) is **tractable** if there exists a constant \(c \) and a TM \(T \) such that \(L(T) = L \) and the computation of \(L \) on input \(x \) always halts after at most \(|x|^c \) steps.

Class P contains all tractable languages.

(P stands for “polynomial-time.”)

Remark: we are not restricted to Turing machines. If we solve a problem in, e.g., Java, then there is a TM which follows the same computation and it is slower by only a polynomial factor.
Class P and other classes

Examples of problems in P:
- Check if balanced parenthesis
- Graph algo (see class BQP) < does there exist a path from A to B?

Is every problem in P?
- No, e.g. halting problem

Is every decidable problem in P?
- There are problems in Rec which are provably not in P
Satisfiability

Input: a CNF (conjunctive normal form) formula ϕ

Output: YES, if ϕ is satisfiable (i.e. it is possible to assign true/false values to the variables in ϕ so that ϕ is true), and NO otherwise.

I.e., SAT is the set of all satisfiable CNF formulas.

Example:

$$(x_1 \lor \neg x_2) \land (x_2 \lor x_3 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

Is SAT in P?

nobody knows
Class NP

A nondeterministic polynomial-time algorithm for SAT?

Example:

\[q = (x_1 \lor \neg x_2) \land (x_2 \lor x_3 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4) \]

1) nondeterministically guess true/false value for each variable \(\leftarrow \) poly-time

2) verify the guess, i.e. see if \(q \) is true \(\leftarrow \) poly-time
Class NP

Class NP contains languages \(L \) for which there is a NTM \(T \) such that \(L(T) = L \) and each computation of \(T \) halts after a polynomial-number of steps.

Examples:

INDEPENDENT SET

Input: a graph \(G \) and a number \(k \)

Output: YES if \(G \) contains \(k \) vertices such that no pair of these vertices is connected by an edge (an independent set of size \(k \))

Claim: INDEPENDENT SET is in NP.
Class NP

Class NP contains languages L for which there is a NTM T such that \(L(T) = L \) and each computation of T halts after a polynomial-number of steps.

Examples:

VERTEX COVER

Input: a graph \(G \) and a number \(k \)

Output: YES if \(G \) contains \(k \) vertices such that every edge is “covered” by at least one of these vertices (a vertex cover of size \(k \))

Claim: VERTEX COVER is in NP.
P vs. NP

We know that SAT, VERTEX COVER, and INDEPENDENT SET are all in NP (and we do not know if they are in P).

A BIG open problem: is $P = NP$?

most people believe $P \neq NP$

What can we say about P vs. NP?

$P \subseteq NP$

most people believe $P \neq NP$

NP-complete
Reducibility

We say that a problem L_1 can be \textbf{polynomial-time many-one reduced} to a problem L_2 if we can construct a polynomial-time algorithm for L_1 which uses a single call of a polynomial-time algorithm for L_2 as a subroutine. We write $L_1 \leq_p L_2$.

\textbf{Example} : INDEPENDENT SET \leq_p VERTEX COVER

\begin{itemize}
 \item V - set of all vertices
 \item $S \subseteq V$ - an indep. set then $V-S$ is a vertex cover (and vice versa)
 \end{itemize}

Suppose we have $\text{VertexCover}(G, k)$

Then we can:

\begin{verbatim}
IndepSet(G, k) {
 return $\text{VertexCover}(G, |V| - k)$,
}
\end{verbatim}

Thus $\text{IND. SET} \leq_p \text{VERTEX COVER}$
A problem L in NP is **NP-complete** if every other problem in NP can be reduced to L.

(I.e., NP-complete problems are the hardest in NP.)

Cook's Thm: SAT is NP-complete.

A possible attack on “$P=NP$?”:

Give a polynomial-time algorithm for an NP-complete problem. Then $P=NP$.
NP-completeness

Many real-life NP-complete problems, e.g., check List of NP-complete problems on Wikipedia.

How to prove that a problem is NP-complete?

- reduce from another NP-complete problem
 (e.g. if we know that INDEP. SET is NP-complete and we've shown \(\text{INDEP. SET} \leq_{p} \text{VERTEX COVER} \), \(\text{VERTEX COVER} \) must be NP-complete as well)

If my problem is NP-complete, what do I do now?

- approximation, heuristic, change of requirements