Homework #6

Due 24 Oct. 2007

1. Describe each of the languages described by the following grammars in set notation.

 1. \(S \rightarrow aaSB \mid \Lambda; \quad B \rightarrow bB \mid b \quad \{a^ib^j \mid 0 < i <= j \text{ or } i = j = 0 \} \)
 2. \(S \rightarrow aSbb \mid A; \quad A \rightarrow cA \mid c \quad \{a^ic^jb^i \mid i >= 0; j > 0 \} \)
 3. \(S \rightarrow aSB \mid aB; \quad B \rightarrow bb \mid b \quad \{a^ib^j \mid i <= j <= 2i; i,j > 0 \} \)

2. For the grammar

 \(S \rightarrow aSB \mid \Lambda \)
 \(B \rightarrow bB \mid \Lambda \)

 1. Describe the grammar using set notation. \(\{a^ib^j \mid i,j >= 0 \text{ and } (i > 0 \text{ or } j = 0) \} \)
 2. Show that the grammar is ambiguous by example.
 Two different left-most derivations of the string aabb:
 \(S \Rightarrow aSB \Rightarrow aaSB \Rightarrow aaBB \Rightarrow aabBB \Rightarrow aabB \Rightarrow aabbB \Rightarrow aabb \)
 \(S \Rightarrow aSB \Rightarrow aaSB \Rightarrow aaBB \Rightarrow aabBB \Rightarrow aabbBB \Rightarrow aabbB \Rightarrow aabb \)
 3. Design an unambiguous grammar for the language.
 For example:
 \(S \rightarrow aAB \mid \Lambda \)
 \(A \rightarrow aA \mid \Lambda \)
 \(B \rightarrow bB \mid \Lambda \)

For each of the following problems you must draw a diagram for the machine you're designing and give a brief description of how it works.

3. Design a PDA for non-palindromes, i.e., \(\{w \in \{0,1\}^* \mid w \neq wR \} \).

4. Design a DPDA for the language \(\{a^ib^j\mid i + k = j \} \).

5. Transform the machine in Table 7.5 (p. 263) to a DPDA where \(\Gamma=\{Z0,X\} \).
 (Such a machine is called a counter automaton.)