Polynomial-time reductions

We have seen several reductions:

- sorting to convex hull
- longest incr. subseq. to longest common subseq.
- network flows to lin. prog.
- multi-source multi-sink max flow to single-source single-sink max flow
- max bipartite matching to max flow
Polynomial-time reductions

Informal explanation of reductions:

We have two problems, X and Y. Suppose we have a black-box solving problem X in polynomial-time. Can we use the black-box to solve Y in polynomial-time?

If yes, we write $Y \leq_p X$ and say that Y is polynomial-time reducible to X.
Polynomial-time reductions

Informal explanation of reductions:

We have two problems, X and Y. Suppose we have a black-box solving problem X in polynomial-time. Can we use the black-box to solve Y in polynomial-time?

If yes, we write $Y \leq_p X$ and say that Y is polynomial-time reducible to X.

More precisely, we take any input of Y and in polynomial number of steps translate it into an input (or a set of inputs) of X. Then we call the black-box for each of these inputs. Finally, using a polynomial number of steps we process the output information from the boxes to output the answer to problem Y.
Polynomial-time reductions

Polynomial-time: what is it?

Class of problems P:

- Consider problems that have only YES/NO output

- Every such problem can be formalized - e.g. encode the input into a sequence of 0/1 and the problem is defined as the union of all input sequences for the YES instances

- Polynomial-time algorithm runs (on a Turing machine) in time polynomial in the length of the input, e.g. for an input of length n the algo takes (e.g.) $O(n^4)$ steps to determine if this input is a YES instance
Polynomial-time reductions

Example:

Problem 1: **CNF-SAT**

Given is a conjunctive normal form (CNF) expression such as:

\[(x \lor y \lor z) \land ((\neg x) \lor z \lor w) \land \ldots \land ((\neg w) \lor x)\]

Question: Does there exist a satisfiable assignment?

\[x \lor y \lor z \land (\neg x) \lor z \lor w \land \ldots \land ((\neg w) \lor x)\]

e.g. \[
\begin{align*}
x &= \text{anything} \\
y &= \text{anything} \\
z &= T \\
w &= F
\end{align*}
\]
Polynomial-time reductions

Example:

Problem 2: **Clique**

Given is a graph $G = (V, E)$ and number k.

Question: Does there exist a clique of size k, i.e. a subset of vertices S of size k such that for every u, v in S, (u, v) is in E?

G: $k = 4$

Brute force:
- try all subsets $O(2^n \cdot k^2)$
- or try only size k: $O((\binom{n}{k}) \cdot k^2)$

$k = 3$ **YES**
Polynomial-time reductions

Example:

Goal: show \(\text{CNF-SAT} \leq_p \text{CLIQUE} \).
Polynomial-time reductions

Example:

Goal: show $\text{CNF-SAT} \leq_p \text{CLIQUE}$.

(Given an instance of CNF-SAT, convert to an instance of CLIQUE so that ... (what ?).)
Polynomial-time reductions

Why reductions?

A ≤ₚ B

if B is poly-time, then A is poly-time
B ∈ P → A ∈ P

if A is "hard"
could it be that B ∈ P?

No bec.
B must be "hard"
Polynomial-time reductions

Why reductions?

• to solve our problem with not much work (using some already known algorithm)

• to say that some problems are harder than others
Class **NP**

Class P

- YES/NO problems with a polynomial-time algorithm

Class NP

- YES/NO problems with a polynomial-time “checking algorithm” – more precisely, given a solution (e.g. a subset of vertices) we can check in a polynomial time if that solution is what we are looking for (e.g. is it a clique of size k ?)

Example: Show that CNF-SAT is in NP.

What is the thing we want to check?
How does the “checking algorithm” work in this case?
Class NP

Class P

• YES/NO problems with a polynomial-time algorithm

Class NP

• YES/NO problems with a polynomial-time “checking algorithm” - more precisely, given a solution (e.g. a subset of vertices) we can check in a polynomial time if that solution is what we are looking for (e.g. is it a clique of size k?)

Example: Show that CNF-SAT is in NP.

Now consider CNF-UNSAT, the problem of unsatisfiable formulas (YES instances are the unsatisfiable formulas, not the satisfiable ones as in CNF-SAT). Is CNF-UNSAT in NP?
Class NP

Class P
• YES/NO problems with a polynomial-time algorithm

Class NP
• YES/NO problems with a polynomial-time “checking algorithm” – more precisely, given a solution (e.g. a subset of vertices) we can check in a polynomial time if that solution is what we are looking for (e.g. is it a clique of size \(k \) ?)

In short:
P - find a solution in polynomial-time

NP - check a solution in polynomial-time
Class **NP**

Class P

- YES/NO problems with a polynomial-time algorithm

Class NP

- YES/NO problems with a polynomial-time “checking algorithm” – more precisely, given a solution (e.g. a subset of vertices) we can check in a polynomial time if that solution is what we are looking for (e.g. is it a clique of size k?)

In short:

P - find a solution in polynomial-time

NP - check a solution in polynomial-time

BIG OPEN PROBLEM

Is $P = NP$?
NP-complete and NP-hard

NP-hard

A problem is NP-hard if all other problems in NP can be polynomially reduced to it.

NP-complete

A problem is NP-complete if it is (a) in NP, and (b) NP-hard.

In short:

NP-complete: the most difficult problems in NP
NP-complete and NP-hard

NP-hard
A problem is NP-hard if all other problems in NP can be polynomially reduced to it.

NP-complete
A problem is NP-complete if it is (a) in NP, and (b) NP-hard.

In short:
NP-complete: the most difficult problems in NP

Why study them? Find a polynomial-time algo for any NP-complete problem, or prove that none exists. (Either way, no worry about job offers till the end of your life.)
NP-complete and NP-hard: how to prove

Given: a problem A

Suspect: polynomial-time algorithm unlikely

Want: prove that the problem is NP-hard or NP-complete (thus a polynomial-time algorithm VERY unlikely)

How to prove this?

Take a known NP-hard (NP-complete) problem B and show: $B \leq_p A$
NP-complete and NP-hard: how to prove

Given: a problem

Suspect: polynomial-time algorithm unlikely

Want: prove that the problem is NP-hard or NP-complete (thus a polynomial-time algorithm VERY unlikely)

How to prove this?

Thm (Cook-Levin): CNF-SAT is NP-hard.
NP-complete and NP-hard: how to prove

Given: a problem

Suspect: polynomial-time algorithm unlikely

Want: prove that the problem is NP-hard or NP-complete (thus a polynomial-time algorithm VERY unlikely)

How to prove this?

Thm (Cook-Levin): CNF-SAT is NP-hard.

We have already proved that CLIQUE is NP-hard. How come?
The recipe to prove NP-hardness of a problem X:
1. Find an already known NP-hard problem Y.
2. Show that $Y \leq_P X$.

The recipe to prove NP-completeness of a problem X:
1. Show that Y is NP-hard.
2. Show that Y is in NP.
INDEPENDENT SET problem

Input: A graph $G=(V,E)$ and an integer k

Output: Does there exist an independent set of size k, i.e., a subset of vertices S of size k such that for every u,v in S, (u,v) is not in E?

G: $k = 4$

YES

in NP: set of k vertices
verify: no edges
NP-complete and NP-hard: examples

INDEPENDENT SET problem

Input: A graph $G=(V,E)$ and an integer k

Output: Does there exist an independent set of size k, i.e. a subset of vertices S of size k such that for every u,v in S, (u,v) is not in E?

Is INDEPENDENT SET problem NP-complete?
NP-complete and NP-hard: examples

VERTEX COVER problem

Input: A graph $G=(V,E)$ and an integer k

Output: Does there exist a subset of vertices S of size k such that every edge has at least one endpoint in S?

G:

$k = 5$

YES

In NP:
Solution: a set of vertices of size k
Verify: every edge covered
NP-complete and NP-hard: examples

VERTEX COVER problem

Input: A graph $G=(V,E)$ and an integer k

Output: Does there exist a subset of vertices S of size k such that every edge has at least one endpoint in S?

Recall:

CNF-SAT, CLIQUE, INDEPENDENT SET all NP-complete.

We will show that INDEPENDENT SET \leq_p VERTEX COVER.
Lemma: **INDEPENDENT SET** \leq_p **VERTEX COVER**.

Let's look at the complement of the IS:
- Is it a vertex cover?

We need to show that every edge has an endpoint that is in the VC, i.e., that has an endpoint that is not in the IS (not circled).

YES, bec. if both endpoints in IS, then that would not be an IS!

And vice versa, complement of VC is an IS.
Other well-know NP-complete problems

HAMILTONIAN CYCLE

Input: A graph G

Output: Is there a cycle going through every vertex (exactly once)?
Other well-know NP-complete problems

TRAVELING SALESMAN PROBLEM (TSP)

Input: A complete weighted graph \(G = (V, V \times V) \) with weights \(w \), a threshold number \(t \)

Output: Is there a cycle going through every vertex (exactly once), with total weight of the cycle < \(t \) ?

\[
G, w: \\
t = 14
\]

\[
\text{YES} \quad \text{in NP} \quad \text{similar to HC}
\]
Other well-know NP-complete problems

TRAVELING SALESMAN PROBLEM (TSP)

Input: A complete weighted graph $G = (V, V \times V)$ with weights w, a threshold number t

Output: Is there a cycle going through every vertex (exactly once), with total weight of the cycle $< t$?

Is TSP NP-complete?

Take HC G : create a complete graph, $eeE(G)$ of weight 1

$e \in E(G)$

$t = n$
Other well-know NP-complete problems

3-COLORING

Input: A graph G

Output: Is it possible to color vertices of G by three colors so that no edge has its end-points colored by the same color?
Other well-know NP-complete problems

Remarks about coloring problems:

- 2-COLORING is in P (what is the algorithm?)
- 3-COLORING is NP-complete
- how about 4-COLORING?
Other well-know NP-complete problems

KNAPSACK
(sometimes also disguised as problem named **SUBSET-SUM**)
- we have $O(nW)$ algorithm for KNAPSACK
- but KNAPSACK is NP-complete
- how come?
Decision vs. construction

Suppose we have a black-box answering YES/NO for the 3-COLORING problem. Can we use it to find a 3-coloring?