Convex Hulls

Given a set of points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), the **convex hull** is the smallest convex polygon containing all the points.

Idea 1: For every pair of points:
- Check if points on both sides of their connection (requires loop through all other points)
 - if not, then include the connection in the CH

RUNNING TIME: \(O(n^3)\)

Idea 2:
- **Min. point of hull**: Choose next angle (with the last line)
- **Choose next angle**: etc.
Convex Hulls

Gift-wrapping algorithm running in time $O(n^2)$, or, more precisely, $O(nk)$ where k is the number of vertices on the hull.

An $O(n \log n)$ algorithm?
Convex Hulls

The **Graham Scan** algorithm

1. sort points by their angle to a center point (polar sorting)
2. find the min x coord., let the corresp. point be #1
3. include points #1,#2 on the current hull
4. for cpoint = #3 to #n:
 5. while cpoint on the right of the line connecting the last and the second last point on the hull:
 6. remove the last point from the hull
 7. add cpoint to the hull (end of the list)
8. do (*) except using point #1 in place of cpoint

Running time? \(O(n \log n) \)
- sorting \(O(n \log n) \)
- everything else: \(O(n) \) (bes. adding: \(O(n) \) steps, removing: \(O(n) \) steps)
Convex Hulls

A divide-and-conquer algorithm?
- Assume points sorted by their x-coordinates
- \text{dc-ch}(a_1, \ldots, a_n):
 - if \(n = 3 \):
 - return the points (e.g., counter-clockwise)
 - \(h_1 = \text{dc-ch}(a_1, \ldots, a_{n/2}) \)
 - \(h_2 = \text{dc-ch}(a_{n/2+1}, \ldots, a_n) \)
 - return puttogether(\(h_1, h_2 \))

Running time?
- \(T(n) \leq 2T(n/2) + cn \)
- \(T(n) = O(n \log n) \)