Problem 1

Use the Master Theorem to evaluate the following recurrences:

- \(T(n) = 9 T\left(\frac{n}{3}\right) + \Theta(n^2) \)
- \(T(n) = 2 T\left(\frac{n}{4}\right) + \Theta(n) \)
- \(T(n) = 2 T\left(\frac{n}{4}\right) + \Theta(1) \)

Problem 2

Given is a sequence of numbers \(a_1, a_2, a_3, \ldots, a_n \). We say that \(a_{j_1}, a_{j_2}, \ldots, a_{j_k} \) is a subsequence of this sequence iff \(1 \leq j_1 < j_2 < \ldots < j_k \leq n \). The subsequence is increasing iff \(a_{j_1} < a_{j_2} < \ldots < a_{j_k} \). In the longest increasing subsequence problem we search for an increasing subsequence of \(a_1, a_2, a_3, \ldots, a_n \) that is the longest possible (i.e, \(k \) is as large as possible).

For example, for sequence 8, 2, 5, 7, 3, 4, 9, 6, 10, the longest increasing subsequences are 2, 3, 4, 6, 10 and 2, 5, 7, 9, 10 – either of them is a valid longest increasing subsequence.

Mr. Brilliant came up with the following greedy approaches to the problem:

- Find the smallest number in the sequence – if there are more than one, select the one with the smallest index. Suppose the number is \(a_\ell \). Output the number. Repeat the previous steps for the input sequence \(a_{\ell+1}, a_{\ell+2}, \ldots, a_n \), until the input sequence is empty.
- Try the following with \(\ell = 1, 2, \ldots, n \): Let \(i = \ell \). Include \(a_i \) in the subsequence. Find the smallest \(j \) such that \(a_i < a_j \). If there is no such \(j \), stop. Else, let \(i = j \) and repeat the steps described in the last two sentences. Once you are done trying all possible \(\ell \)'s, out of the \(n \) obtained subsequences output one with the longest length.

For every greedy approach:

(a) Give a corresponding detailed and properly structured pseudo code. In particular, the pseudo code should be like code, without worrying about syntactical issues like semicolons. Do not use any go-to statements, breaks, continues, and exceptions.

(b) Determine whether the approach works. Does it correctly identify a longest subsequence for every input? If not, provide a counterexample. In particular, provide 1. the input sequence, 2. an optimal solution, and 3. the solution produced by the greedy approach.
Problem 3

This problem is also about the longest increasing subsequence problem (see Problem 2). You will implement a recursive approach and a dynamic-programming-based approach and compare their running times. In both cases we are interested only in finding the length of the sequence, not the sequence itself.

- Implement the following recursive approach. Implement the function `incrSubSeqRecursive(j, A)`, that computes the maximum length of an increasing subsequence of the sequence a_1, a_2, \ldots, a_n (stored in the array A) that ends with the element a_j. This function tries to find a previous element a_i such that $i < j$ and $a_i < a_j$, and then it recursively searches for the maximum length of an increasing subsequence of a_1, a_2, \ldots, a_i. It tries up to $j - 1$ different i's and it chooses the one that gives rise to the largest maximum length. By concatenating a_j to the subsequence of a_1, a_2, \ldots, a_i ending with a_i, we get a longest increasing subsequence of a_1, a_2, \ldots, a_j.

- Implement the dynamic programming approach on slide 29 of the interval scheduling slides.

- Generate about 10 inputs for different values of n (how large can n be?) and report your observations on the running times of the two respective algorithms.