Diffusion and Confusion

Two properties that a good cryptosystem should have:

Diffusion: change of one character in the plaintext results in several characters changed in the ciphertext

Confusion: the key does not relate in a simple way to the ciphertext (in particular, each character of ciphertext should depend on several parts of the key)

What about the cryptosystems we've seen so far?

No
Block Ciphers

- blocks of letters encrypted simultaneously
- in general, have the diffusion and confusion properties

Simple examples:

The **Playfair cipher** (used in WWI by the British):
- encrypts digrams by digrams (for details see Section 2.6)

 problem: we have frequency tables for digrams (see the book) → not safe

The **ADFGX cipher** (used in WWI by the Germans):
- encrypts letters by digrams, followed by permuting the encrypted letters within each block (for details see Section 2.6)

The **Hill cipher**: see next slide (Section 2.7)

Remark: Many modern cryptosystems (DES, AES, RSA) are also block ciphers.
Hill Cipher

Key: an **invertible** $m \times m$ matrix (where m is the block length)
[defines a linear transformation]

Encryption:
- view a block of m letters as a vector, multiply by the key

Example:

Key $K = \begin{pmatrix} 2 & 5 \\ 9 & 4 \end{pmatrix}$

What is m? $m = 2$

How to encrypt blah?

Encrypting 'bl':

$(1, 11) \cdot \begin{pmatrix} 2 & 5 \\ 9 & 4 \end{pmatrix} = (2 \cdot 1 + 5 \cdot 11, 9 \cdot 1 + 4 \cdot 11) = (12, 55) \equiv (23, 23) \pmod{26}$

Encrypting 'ah':

$(0, 7) \cdot \begin{pmatrix} 2 & 5 \\ 9 & 4 \end{pmatrix} = (2 \cdot 0 + 5 \cdot 7, 9 \cdot 0 + 4 \cdot 7) = (35, 28) \equiv (11, 2) \pmod{26}$
Hill Cipher

Decrypting:
- multiply each block by K^{-1}

How to invert a matrix K?
- invertible (mod 26) iff $\gcd(\det(K), 26) = 1$
- if $m=2$ and invertible, then:

$$K^{-1} = \det(K)^{-1} \begin{pmatrix} k_{2,2} & -k_{1,2} \\ -k_{2,1} & k_{1,1} \end{pmatrix}$$

what is $K^{-1} \pmod{26}$: an $m \times m$ matrix s.t.
$$K \cdot K^{-1} \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} \pmod{26}$$

- inverting matrices for other values of m: see any basic linear algebra text

- invert K for our example

For our example:
$$K = \begin{pmatrix} 2 & 5 \\ 9 & 4 \end{pmatrix}$$

$$K^{-1} \equiv \begin{pmatrix} 4 & -5 \\ -9 & 2 \end{pmatrix}^{-1} \equiv \begin{pmatrix} 28 & -35 \\ -63 & 14 \end{pmatrix} \equiv \begin{pmatrix} 2 & 17 \\ 15 & 14 \end{pmatrix} \pmod{26}$$

$\det(K) = k_{1,1}k_{2,2} - k_{1,2}k_{2,1}$

$\det(K)^{-1} \equiv 7 \pmod{26}$

we hope...
Hill Cipher

Decrypting:
- multiply each block by K^{-1}

How to invert a matrix K?
- invertible (mod 26) iff $\gcd(\det(K),26)=1$
- if $m=2$ and invertible, then:

$$K^{-1} = \det(K)^{-1} \begin{pmatrix} k_{2,2} & -k_{1,2} \\ -k_{2,1} & k_{1,1} \end{pmatrix}$$

- inverting matrices for other values of m: see any basic linear algebra text

what is $K^{-1} \pmod{26}$: an mxm matrix s.t.

$$K \cdot K^{-1} \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$\pmod{26}$

don’t need to memorize but know that we can compute this

if using a software to compute K^{-1} (e.g. Mathematica, Matlab, Maple)

we will likely get matrices containing real number (not numbers $\in \mathbb{Z}_{26}$)

solution: 0 multiply by the $\det(K)$ -> getting

(Chances L is not an inverse of K)

since

$$L \cdot K = \begin{pmatrix} \text{odd} \\ \text{odd} \end{pmatrix}$$

@ divide by $\det(K) \pmod{26}$
Hill Cipher

Remark: The Hill cipher is a generalization of the permutation cipher (permute the letters within each block)

Cryptanalysis:
- hard with ciphertext-only
- easy with known plaintext:
 - suppose we know m:

 e.g. permutation \(m = 3 \)
 \(1 \to 3 \to 2 \)
 'abc' \(\mapsto \) 'bca'

 instance of Hill:
 \[
 K = \begin{pmatrix}
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 0 & 1 & 0
 \end{pmatrix}
 \]

 example:
 we know
 'be' \(\mapsto \) 'xx'
 we want to find \(K \) s.t.
 \[
 (1, 11) \cdot K \equiv (23, 23) \pmod{26}
 \]
 need to solve the system of congruences

 how many keys do we have?
 if ignoring the gcd requirement,
 then
 \(26^m \) matrices

 cannot brute force

 - how to find m?
 dry m = 2, m = 3, ... (brute-force)