NP-Completeness

Thm 7.27 [Cook-Levin]: SAT is in P iff $P = NP$.

\[P = NP \quad \text{iff} \quad P \subseteq NP \]
Def 7.29: Language A is **polynomial-time reducible** to language B, written $A \leq_p B$, if a polynomial-time computable function $f: \Sigma^* \rightarrow \Sigma^*$ exists such that for every w,

$$w \in A \iff f(w) \in B$$

The function f is called **polynomial-time reduction** of A to B.

Thm 7.31: If $A \leq_p B$ and $B \in P$, then $A \in P$.

overall run. time of solver of A: $O(n^{dc})$
NP-Completeness

Thm 7.32: 3SAT is polynomial-time reducible to CLIQUE, where

\[3\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable } 3\text{-cnf formula} \} \]

Each "clause" has 3 literals (permittive);
- clauses are joined by \(\wedge \);
- within clauses only \(\lor \).

Draw edges between literals from different clauses, except between \(x_i \) and \(\overline{x_i} \).

If \(\|G\| = n \)
- then \(G \) has \(\leq n \) vertices
- \(\leq n^2 \) edges

Hence, \(G \) is \(p\)-time.

\(k \)-SAT reduction:
- If \(\phi \) has a solution;
 \(f(\phi) = \{ 0,1,2 \} \)
- \(f(G) \) has a \(k \)-clique.
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:

- B is in NP, and

- every A in NP is polynomial-time reducible to B.
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:
- B is in NP, and
- every A in NP is polynomial-time reducible to B.

Thm 7.35: If B is NP-complete and $B \in P$, then $P = NP$.
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:

- B is in NP, and
- every A in NP is polynomial-time reducible to B.

Thm 7.36: If B is NP-complete and $B \leq_p C$ for some $C \in$ NP, then C is NP-complete.
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:
- B is in NP, and
- every A in NP is polynomial-time reducible to B.

Thm 7.37 [Cook-Levin]: SAT is NP-complete.

Proof idea: take a NP problem, say A. need to provide f s.t. $WEA \iff f(w) \in SAT$

f encodes the computation of the NTM for A into a satisfiable formula ϕ

somewhat similar to the reduction we did for PCP, check the book for details.

we showed $SAT \leq_p CLIQUE$ (and last class $CLIQUE \in NP$) \Rightarrow CLIQUE is NP-c.

Note: a long list of known NP-complete problems.