Def 7.1: Let M be a deterministic TM that always halts. The **running time** (or **time complexity**) of M is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the max number of steps M takes on any input of length n.

Note: we usually use the big-O notation, instead of precisely determining f.

\[
\begin{array}{c}
\text{Input} \\
\hline
\text{1abba} \\
\text{1bddd} \\
\text{bbbbb} \\
\end{array}
\]

Length 4 \rightarrow max # of steps $f(4)$

Linear $= \text{TIME}(O(n))$

Def 7.7: The **time complexity class** $\text{TIME}(t(n))$ is the collection of languages that have an $O(t(n))$ deterministic decider (TM that always halts).
What about nondeterministic TMs?
What about nondeterministic TMs?

Def 7.9: Let \(N \) be a nondeterministic decider. The *running time* of \(N \) is the function \(f: \mathbb{N} \rightarrow \mathbb{N} \), where \(f(n) \) is the maximum number of steps that \(N \) uses on any branch of its computation on any input of length \(n \).

Thm 7.11: Let \(t(n) \) be a function, where \(t(n) \geq n \). Then every \(t(n) \) nondeterministic single-tape TM has an equivalent \(2^{0(t(n))} \)-time deterministic single-tape TM.