We have many types of reductions, now we’ll formally define one of them (the one we’ve been using):

Def 5.17: A function $f: \Sigma^* \to \Sigma^*$ is called **computable** if there is a TM that on every input w halts with $f(w)$ on its tape (and nothing else).
Def 5.20: Language A is **mapping reducible** (or, **many-one reducible**) to language B, denoted $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that, for every w,

$$W \in A \iff f(w) \in B.$$

The function f is called the **reduction** of A to B.

When proving undecidability of PCP, we did just this \uparrow:

- $A = \text{acceptance problem } A_{TM}$
- $B = \text{MPCP}$

$$f(m, w) = \langle p \rangle$$
Mapping Reducibility

Thm 5.22: If $A \leq_m B$ and B is decidable, then A is decidable.

Cor 5.23: If $A \leq_m B$ and A is undecidable, then B is undecidable.

Examples:

- $A_{TM} \leq_m M$PCP
- M$PCP \leq_m A_{TM}$

NOT TRUE:

If $A \leq_m B$ and A dec. $\not\implies B$ dec.

(see $A =$ reg. lang., $B =$ HALT$_{TM}$)

eg.
Mapping Reducibility

Thm 5.28: If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Cor 5.29: If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing recognizable.

Thm 5.30: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.