Reductions: if we can reduce (transform) problem A into a problem B, then solving problem B gives solution to problem A.

Example: \(\text{HALT}_{TM} = \{ <M,w> \mid M \text{ is a TM that halts on } w \} \)

Suppose \(\text{HALT}_{TM} \) is decidable.

\[<M,w> \quad \text{HALT}_{TM} \quad <M,w> \]

YES if \(M \) halts on \(w \)

NO if \(M \) does not halt on \(w \)

Run \(M \) on \(w \)

Accept

Reject

YES if \(M \) accepts \(w \)

NO if \(M \) does not accept \(w \)

Thm 5.1: \(\text{HALT}_{TM} \) is undecidable.

Note: \(\text{HALT}_{TM} \) is the halting problem, \(\text{A}_{TM} \) is the acceptance problem.
Thm 5.1: \(E_{TM} \) is undecidable, where

\[
E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}
\]

Suppose a decider exists for \(E_{TM} \)

Will construct a decider for \(A_{TM} \) (could have done \(HALT_{TM} \) as well) \(\rightarrow \) a contradiction

\(M_2: \)
1) check the input = w; if no, reject
2) if yes, run M on w

\(\delta \)-func for \(M_2 \) will have to “hard-wire” w into itself and then it will use the \(\delta \)-func of M as a subroutine (again “hard-wiring”)

[Section 5.1]
Thm 5.3: \(\text{REGULAR}_{TM} \) is undecidable, where

\[
\text{REGULAR}_{TM} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is regular} \}
\]

If we have a decider for \(\text{REGULAR}_{TM} \), we can create a new decider for \(\text{ATM} \).

Create \(M_3 \):

1. Check if input is a palindrome; if yes, accept.
2. If no, run \(M \) on \(w \) and if \(M \) accepts, accept.

Claim:

- If \(M \) accepts \(w \) then \(L(M_3) = \Sigma^* \).
- Else, \(L(M_3) = \{ s \mid s \in \Sigma^*, s \neq w \} \).
Thm 5.4: EQ_{TM} is undecidable, where

$$EQ_{TM} = \{ <M_1, M_2> | M_1, M_2 \text{ are TM's and } L(M_1) = L(M_2) \}$$

Suppose we have a decider for EQ_{TM},

we'll construct a decider for E_{TM}.

Yes if $L(M_1) = L(M_2)$

No otherwise

Yes if $L(M) = \emptyset$

No otherwise
Thm 5.4: ALL_{CFG} is undecidable, where

$$\text{ALL}_{\text{CFG}} = \{ <G> \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$$