Nonregular languages

Which of these languages are regular?

- \(B = \{ 0^n1^n \mid n \geq 0 \} \)
- \(C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \} \)
- \(D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \} \)

all languages feel like “need to count” and thus not regular
(not a formal argument
\(\Rightarrow \) will do this week)

but actually \(D \) is regular \(\Rightarrow \) try to give a FA for \(D \)
Nonregular languages

Which of these languages are regular?

- $B = \{ 0^n1^n \mid n \geq 0 \}$
- $C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of } 0\text{'s and } 1\text{'s } \}$
- $D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of } 01\text{'s and } 10\text{'s as substrings } \}$

Proof by closure properties: [not in the book]

- assume B is non-regular — we’ll use this to show that C is not regular
 - by contradiction: assume C is regular
 - language 0^*1^* — regular
 - we know regular languages closed under \cap: $C \cap 0^*1^*$ must be regular
 - $= B$ — contradiction: C is non-reg.
Suppose we have a DFA with \(p \) states.

Suppose there is a string of length \(> p \) that is accepted. Are there other strings that are accepted?

\[
|q| = p
\]

\(q \) - string that is accepted

\[
|q| > p
\]

Since \(|q| > p \), while computing on \(q \), we are going to repeat a state.

Let \(kq = kq' \) then \(q, q', \ldots \) are all accepted.
Thm 1.70 [pumping lemma]:

Let A be a regular language. Then there exists a number p s.t. for every string $s \in A$ of length $\geq p$ there exist strings x, y, z s.t.

0. $s = xyz$,

1. For each $i \geq 0$, $xy^i z \in A$,

2. $|y| > 0$, and

3. $|xy| \leq p$.

In particular:

Want to prove B is not regular.

(Want to say p.l. does not hold.)

For any p, $s \in B$ of length $\geq p$ st.

$|xy^i z| = xy^iz$, $|y| > 0$, $|xy^i + p$ st.

there exists i st.

$xy^i z \notin B$
Pumping lemma for regular lang.

Example: \(B = \{ 0^n1^n \mid n \geq 0 \} \)

Prove \(B \) non-regular:

Suppose \(B \) is regular, then the p.l. holds and there exists a \(p \).

Then, take \(s = 0^p1^p \)

\[x \underbrace{0 \ldots 0}_{p} \underbrace{1 \ldots 1}_{p} \underbrace{y \ldots y}_{y \text{ has at least one } 0} \underbrace{z \ldots z}_{z \text{ has } p 	ext{ ones}} \]

by 3) \(xy \) contain only 0's

by 2) \(y \) has at least one 0

by 1) take \(i = 2 \) then \(xy^2z \) should be in \(B \)

\(xz = 0^p \text{ ones} \)

\(= p + |y| \text{ zeros} > p \)

Therefore, \(xy^2z \not\in B \)

\(B \) not regular \(\square \)
Pumping lemma for regular lang.

Example: \(C = \{ w \mid w \text{ has equal number of 0's and 1's} \} \)

\textbf{Pf:} suppose \(C \) is regular, then the p.l. holds and there is a \(p \).

consider \(s = 0^p1^p \) (notice \(s \in C, |s| = 2p \geq p \))

do the same as previous slide \(\square \)
Example: $F = \{ \text{ww} \mid w \in \{0,1\}^* \}$

Pf: Assume F is regular, then let p be the p.l. constant. Consider $s = 0^p1^p0^p1^p$ (notice $s \in F$ and $|s| > 2p$).

Take $i = 0$ by 1) $xy^0z = xz \notin F$ where $y = 0^p1^p0^p1^p \notin F$ since $|y| > 0$.
Pumping lemma for regular lang.

Example: \(D = \{ 1^k \mid k \geq 0 \text{ is a square} \} \)

\(D \) is non-reg. \(\xleftarrow{\text{want to prove}} \)

Suppose \(D \) is regular. Let \(p^2 \) be the p.l. constant.

Consider \(s = 1^{p^2} \)

Suppose \(xy^2z = s \) and conditions 1-3 hold

\(\rightarrow \)

by 2 \(1y| > 0 \) \(\bigg\} \) let \(1y| = \delta \)

by 3 \(1y| \leq p \)

by 1 take \(i = 0 \)

\(xy^i z = 1^{p^2} + (i-1)\delta = 1^{p^2-\delta} \)

then \(p^2 - p \leq |xy^i z| \leq p^2 - 1 \)

the closest smaller square to \(p^2 \): \((p-1)^2 = p^2 - 2p + 1 \)

therefore there is no square in \(\{ p^2-p, \ldots, p^2-1 \} \)

and thus \(xy^i z \notin D \quad \square \)
Pumping lemma for regular lang.

Section 1.4

Example: \(E = \{ 0^i1^j \mid i > j \} \)

Take \(s = 0^{p+1}1^p \)

Within 0's

\(l_y > 0 \)

Take \(i = 0 \)

\(xy^0z \) contains \(p \) ones

\(p+1-l_y \) zeros

\(\notin E \)

\(\square \)