Regular expressions

- used for describing string patterns, e.g.

\[(0 \cup 1)0^*\] e.g. 000, 10, 1

\[(0 \cup 1)^*\] e.g. \(\varepsilon, 0, 100\)
Regular expressions

Formal definition:

$\Sigma = \{0, 1\}$

R is a **regular expression** if R is one of the following:

1. a for some $a \in \Sigma$, \rightarrow e.g. $R = 0$
2. ε
3. \emptyset
4. $(R_1 \cup R_2)$, where R_1, R_2 are regular expressions
5. $(R_1 . R_2)$, where R_1, R_2 are regular expressions
6. $(R_1)^*$, where R_1 is a regular expression.

Note: this type of definition is called a **recursive/inductive definition** (i.e. the definition is a recursive algorithm).
Regular expressions

For convenience: $R^+ = RR^*$

Examples: give regular expressions for the following languages:

- $\{ w \in \{0,1\}^* \mid w \text{ contains the substring } 001 \}$

 $(0u1)^* \ 001 \ (0u1)^*$

- $\{ w \in \{0,1\}^* \mid w \text{ does not contain two consecutive } 0\text{'s} \}$

 $(\varepsilon u 0) \ (1^+ (\varepsilon u 0))^*$

- $\{ w \in \{0,1\}^* \mid |w| \text{ is divisible by } 2 \text{ or } 3 \}$

 $((0u1)(0u1)(0u1))^* \cup ((0u1)(0u1))^* = ((0u1)^3)^* \cup (0u1)^2)^*$

- $\{ w \in \{0,1\}^* \mid |w| < 4 \}$

 $(\varepsilon u 0u1)^3$
Examples: let R be any regular expression

- $R \cdot \emptyset = \emptyset$
- $R \cdot \varepsilon R = R$
- $\emptyset^* = \varepsilon$
- $\varepsilon \varepsilon^* = \varepsilon$

The language defined by R is denoted $L(R)$. We’ll often abuse notation and use R to denote the language $L(R)$.
Equivalence of reg. expr. and FA's

Thm 1.54: A language is regular iff some regular expression describes it.

Lemma 1.55: Given a regular expression \(R \), there exists a FA \(M \) such that \(L(M) = L(R) \).

Lemma 1.60: Given a FA \(M \), there exists a regular expression \(R \) such that \(L(R) = L(M) \).
Lemma 1.55: Given a regular expression R, there exists a FA M such that $L(M) = L(R)$.

Pf: by "structural induction" we will show that for R there exists a NFA M s.t. $L(M) = L(R)$ and M has a single accept. state.

BASE CASES:
1. $R = a$ for some $a \in \Sigma$ then M: $\xrightarrow{a} \circ$
2. $R = \varepsilon$ then M: $\xrightarrow{\circ}$
3. $R = \emptyset$ then M: $\xrightarrow{\circ \circ}$

INDUCTIVE CASES:
4. $R = (R_1 \cup R_2)$ assume (by IH) that there is a NFA N_1 for R_1, (N_2) (R_2) then just construct N by following the lemma's from previous class e.g. $\xrightarrow{\circ \circ} \emptyset$
5. $R = (R_1 \cdot R_2)$
6. $R = (R_1)^*$
Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.

Proof idea:

Generalized NFA (GNFA)
- transitions may be marked by reg. expr. (not just $\Sigma \cup \{\varepsilon\}$)
- single accept state that a) has arrows coming in from every other state, b) does not have any outgoing arrows
- start state that a) has arrows to every other state, b) does not have any incoming arrows
- all other states have arrows to all other states

(yellow was original automaton)

(colorful mess is an equivalent GNFA)
Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.

Proof idea:

Generalized NFA (GNFA) $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ where all as usual except $\delta: (Q-\{q_{\text{accept}}\}) \times (Q-\{q_{\text{start}}\}) \rightarrow \mathcal{R}$ where \mathcal{R} is the set of all regular expressions over Σ.

Idea: start with a GNFA, remove states one by one and redraw arrows as necessary.

How to get a GNFA: \textit{DONE}
Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.

Proof idea:

How to construct an equivalent GNFA with one fewer state?