An Undecidable Language

$A_{TM} = \{ <M, w> \mid M \text{ is a TM that accepts string } w \}$

- Turing-recognizable?
- Turing-decidable?

We will show that A_{TM} is undecidable.

Acceptance$_{TM}$ (TM, M, w):

1. run M on w
2. if M accepts, then accept

(T-recognizable bec. we will accept if M accepts w but we do not know how to reject if M goes into an infinite computation on w)
A bit about infinite sets and their sizes (diagonalization):

Def 4.12: Let A,B be sets and let $f:A \to B$. We say that f is
- **one-to-one** if $f(a) \neq f(b)$ for every $a \neq b$
- **onto** if for every $b \in B$ there exists $a \in A$ such that $f(a) = b$

If f is one-to-one and onto, then A,B are the **same size** and f is called **correspondence**.

Example: \(\mathbb{N} = \{1,2,3,4,5,\ldots\} \) and \(\{2,4,6,8,\ldots\} \)}
A bit about infinite sets and their sizes (diagonalization):

Def 4.12: Let \(A, B \) be sets and let \(f : A \rightarrow B \). We say that \(f \) is
- **one-to-one** if \(f(a) \neq f(b) \) for every \(a \neq b \)
- **onto** if for every \(b \in B \) there exists \(a \in A \) such that \(f(a) = b \)

If \(f \) is one-to-one and onto, then \(A, B \) are the **same size** and \(f \) is called **correspondence**.

Example: \(\mathcal{N} = \{1,2,3,4,5,...\} \) and \(\{2,4,6,8,...\} \)

Def 4.14: A set is **countable** if it is finite or has the same size as \(\mathcal{N} \).
An Undecidable Language

[Section 4.2]

Are \(\mathbb{Q} \) (rational numbers) and \(\mathbb{R} \) (real numbers) countable?
Cor 4.18: There is a language that is not Turing-recognizable.
An Undecidable Language

Thm 4.11: A_{TM} is not decidable.

Recall: $A_{TM} = \{ <M,w> | M \text{ is a TM that accepts string } w \}$

By contradiction, assume A_{TM} is decidable. Then, there is an algorithm for the question "Does M accept w?". Let H be such an algo.

\[H(<M,w>): \]
- accept if M accepts w
- reject if M does not accept w

Let us create the following TM: $D(<M>)$ on input TM M:

1. Run H on $<M,<M>)$
2. if $H(<M,<M>)$ accepts, then reject
3. else (i.e. $H(<M,<M>)$ rejects), then accept

Let's run:

\[D(<D>): \]
- accept if $H(<D,<D>)$ rejects iff D does not accept $<D$
- reject if $H(<D,<D>)$ accepts iff D accepts $<D$

\[\Box \]
Thm 4.22: A language L is decidable iff L is Turing-recognizable and \overline{L} is Turing-recognizable (we say that L is co-Turing-recognizable).

\[\Rightarrow \quad \text{if } L \text{ is decidable, then } \exists \text{ a TM-decider } M \text{ for } L, \text{ thus } M \text{ is also a TM, i.e. } L \text{ is T-recognizable.} \]

\[\Leftarrow \quad \text{if } L \text{ and } \overline{L} \text{ are both T-recognizable, then we can create a TM-decider } M \text{ for } L: \]

Let M_1 be a TM for L, then M: run M_1 and M_2 in parallel (both on input w)

If M_1 accepts, accept
If M_2 accepts, reject

Cor 4.23: A_{TM} is not Turing-recognizable.

Otherwise, since A_{TM} is T-recognizable, A_{TM} would be decidable!