Myhill–Nerode Thm

Def: Let x, y be strings and L be a language. We say that x and y are **indistinguishable by L** if there for every z the following holds: $xz \in L$ iff $yz \in L$. We write $x \equiv_L y$.

Note: this is an **equivalence** relation.

- Reflexive: $x \equiv_L x$ \checkmark
- Symmetric: $x \equiv_L y \Rightarrow y \equiv_L x$ \checkmark
- Transitive: $x \equiv_L y \land y \equiv_L w \Rightarrow x \equiv_L w$ \checkmark

Examples: find the equivalence classes of \equiv_L:

$L_1 = \{ 0w \mid w \in \{0,1\}^* \}$

- **equiv. class of \equiv_L, containing 0:**

 $[0]_{\equiv_L} = \{ 0w \mid w \in \{0,1\}^* \}$

- **equiv. class of \equiv_L, containing 1:**

 $[1]_{\equiv_L} = \{ 1w \mid w \in \{0,1\}^* \}$

 $[\varepsilon]_{\equiv_L} = \{ \varepsilon \}$

e.g.

- $0 \not\equiv_L 1$ need to find $z \in \Sigma^+$ s.t. $xz \in L$ and $yz \not\in L$ or vice versa

 - e.g. $z = 0$

 equiv. classes of \equiv_{L_1}

 - $0 \equiv_{L_1} 00$

 - $1 \equiv_{L_1} 11010$
Myhill-Nerode Thm

Def: Let x, y be strings and L be a language. We say that x and y are **indistinguishable by L** if for every z the following holds: $xz \in L$ iff $yz \in L$. We write $x \equiv_L y$.

Note: this is an **equivalence** relation.

Examples: find the equivalence classes of \equiv_L:

$L_2 = \{ w \in \{0,1\}^* \mid \text{sum of digits of } w \text{ is divisible by 3} \}$

- $0 \not\equiv_L 1$, e.g., $2 \in \{0,1\}$
- $0 \equiv_L 0 \not\in L_L$
- $1 \equiv_L 1 \in L_L$

$\begin{align*}
[0]_{\equiv_L} &= \{ z \in \{0,1\}^* \mid z \equiv_L 0 \} \\
[1]_{\equiv_L} &= \{ z \in \{0,1\}^* \mid z \equiv_L 1 \} \\
[11]_{\equiv_L} &= \{ z \in \{0,1\}^* \mid z \equiv_L 1 \}
\end{align*}$
Myhill-Nerode Thm

Def: Let x, y be strings and L be a language. We say that x and y are indistinguishable by L if for every z the following holds: $xz \in L$ iff $yz \in L$. We write $x \equiv_L y$.

Note: this is an equivalence relation.

Examples: find the equivalence classes of \equiv_L:

$L_3 = \{ 0^k1^k \mid k > 0 \}$

$0 \not\equiv_{L_3} 00 \quad z=1$
$0 \not\equiv_{L_3} 000 \quad z=1$
$00 \not\equiv_{L_3} 000 \quad z=11$

$[0]_{L_3}$
$[00]_{L_3}$
$[000]_{L_3}$
\ldots

$0^k \not\equiv_{L_3} 0^l \quad k \neq l$

Ex. $z=1^k \quad 0^k z \in L_3$

$0^k \equiv_{L_3} 0^l \quad k=l$

$0^k z \not\in L_3$

$0^{3k} z \not\in L_3$
Myhill-Nerode Thm

Consider a DFA accepting L. Suppose that x and y end in the same state q. What can we say about x,y?

Claim: If L is accepted by a DFA with \(\leq k \) states, then \(\equiv_L \) has \(\leq k \) equivalence classes.
Claim: If \equiv_L has k equivalence classes, then L can be accepted by a DFA with k states.

Construction:

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA where:

- $Q = \{ [w]_{\equiv_L} \mid w \in \Sigma^* \}$ has k elements, i.e., finite.
- $q_0 = [\varepsilon]_{\equiv_L}$
- $F = \{ [w]_{\equiv_L} \mid w \in L \}$ notice that if $w \in L$ and $u \not\in L$ then $w \#_L u$ because $\varepsilon \#_L \varepsilon$ which $[w]_{\equiv_L}$ contains only strings in L

$\delta([w]_{\equiv_L}, \sigma) = [w\sigma]_{\equiv_L}$

\square
Thm [Myhill-Nerode]: \(L \) is regular iff the number of equivalence classes of \(\equiv_L \) is finite.

Using Myhill-Nerode to prove nonregularity:

\(L_3 = \{ 0^k1^k \mid k > 0 \} \)

we already did it! (b/c we showed that \(L_3 \) has \(\infty \) many equiv. classes)

\(L_4 = \{ ww^R \mid w \in \{0,1\}^* \} \)

\(0 \notin L_4 \) \(0^k \notin L_4 \) \(0^k \notin L_4 \)

\([\epsilon], [00], ... \)

\(\infty \) many equiv. classes of \(\equiv_{L_4} \)

\(\Rightarrow L_4 \) non-reg.

\(\square \)
Claim: a DFA is minimal iff its number of states is the same as the number of equivalence classes of its language.

idea: if \#states = \#equiv. classes:

if 3 smaller DFA, then we would get a smaller \#equiv. classes from the states

⇒ hence, DFA minimal

if DFA minimal:

we know \#states ≥ \#equiv. classes, hence minimal implies

\#states = \#equiv. classes

(this is possible due to the claim 2 slides back)

□
Suppose we have a DFA - how to construct a corresponding minimal DFA?

1. remove unreachable states (e.g. by using BFS/DFS from the start state to find all reachable states → remove the others)
Suppose we have a DFA - how to construct a corresponding minimal DFA?

1. Remove unreachable states.

2. Idea: Identify pairs of states that correspond to different equiv. classes
 => the others (those that correspond to the same class) will be merged
1. Remove unreachable states.
2. Identify equivalent states (and merge them):
 - construct graph with vertices = states
 - place edges between every accept and nonaccept state

3. we will draw an edge between p and q if:
 $\exists \sigma \in \Sigma$ s.t.:
 $\delta(p, \sigma)$ consist of a pair
 $\delta(q, \sigma)$ consist of states already
 connected by
 an edge
1. Remove unreachable states.
2. Identify equivalent states (and merge them):
 - construct graph with vertices = states
 - place edges between every accept and nonaccept state
 - continue placing edges as follows while can:

 for $q, r \in Q$, $q \neq r$, place edge (q, r)
 if there exists $a \in \Sigma$ s.t. $(\delta(q, a), \delta(r, a))$ is an edge.

 - at the end:
 let's look at the complement of the graph
 merge states connected in the complement
Minimimal DFA

1. Remove unreachable states.
2. Identify equivalent states (and merge them):
 - construct graph with vertices = states
 - place edges between every accept and nonaccept state
 - continue placing edges as follows while can:

 for q, r ∈ Q, q ≠ r, place edge (q, r) if there exists a ∈ Σ s.t.
 (δ(q, a), δ(r, a)) is an edge.
 - merge all states that do not have edges between them into a single state