Which of these languages are regular?

- $B = \{ 0^n1^n \mid n \geq 0 \}$ not regular (see earlier slides)

- $C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \}$

- $D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \}$

D is regular:
Which of these languages are regular?

- \(B = \{ 0^n1^n \mid n \geq 0 \} \)
- \(C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \} \)
- \(D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \} \)

Proof by closure properties:

We know \(B \) is not regular. We will show \(C \) is not regular.

By contradiction, assume \(C \) is regular.

\[C \cap 0^*1^* = B \]

Assumed regular

Known to be regular

\(B \) is not regular. We know \(B \) is not regular.

Hence, \(C \) cannot be regular.
Pumping lemma for regular lang.

Suppose we have a DFA with \(p \) states.

Suppose there is a string of length \(\geq p \) that is accepted. Are there other strings that are accepted?

\[s = s_1s_2s_3\ldots s_k , \quad k \geq p , \quad s_i \in \Sigma \]

- \(p \) states
- along the computation on \(s \), at least one state has to be revisited (visited twice)
- \(s = xy^2 \)
- \(\forall i \geq 0 : \ xy^i z \in L(M) \)
- \(y \neq \varepsilon \) \((|y| > 0)\)
Thm 1.70 [pumping lemma]:

Let A be a regular language. Then there exists a number p s.t. for every string $s \in A$ of length $\geq p$ there exist strings $x, y,$ and z s.t.

0. $s = xyz,$
1. For each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0,$ and
3. $|xy| \leq p.$
Pumping lemma for regular lang.

Example: \(B = \{ 0^n1^n \mid n \geq 0 \} \)

Want to show \(B \) is not regular (by using the PL).

By contradiction, suppose \(B \) is regular.

Then, the PL holds for \(B \), i.e. \(\exists p \geq 1 \) s.t. \(\forall s \in B, |s| \geq p, \exists x,y,z \) satisfying (0)-(3)

GAME: Find \(s \in B, |s| \geq p \) but there do not exist \(x,y,z \) sat. (0)-(3)

\[
\begin{align*}
S = 01 & \in B \quad |s| \geq p \quad \checkmark \text{does not work.} \\
S = 0^{p-1}1^p & \in B \quad |s| = 2p \geq p \quad \checkmark
\end{align*}
\]

Suppose that \(x,y,z \) exist for \(s \) but then,

1. by 3) \(|xy| \leq p \) \(x,y \) contain only 0's
2. by 2) \(y \) contains at least one 0

Then, take \(i = 2 \): \(xy^iz = xyyz \) contains \(\geq p \) 0's.

\(\square \)
Example: $C = \{ w \mid w$ has equal number of 0's and 1's $\}$

suppose C is regular. Then the PL holds for $C \rightarrow$ let p be the PL number for C.

Consider $s = 0^p1^p \in C \checkmark \mid s \mid \geq p \checkmark$

from now on continue like on the previous slide \[\square\]
Example: \(F = \{ \text{ww} \mid w \in \{0,1\}^* \} \)

- **Strings in \(F \):** 0101, 1111, ε, 00, \(\lambda \), ...

Suppose \(F \) is regular. Then PL holds for \(F \). Let \(p \) be the PL number for \(F \).

Consider \(s = 01 \) bec. \(k \) >>>
- \(0^p1^k \) \(\notin F \)
- \(0^p0^p \) \(\notin F \)
- \(0^p1 \) \(\notin F \)

But... take \(x = 0^p \), all conditions satisfied. \(\square \)

Need different \(k \)!

\[
0^p10^p1\]

\[
\begin{array}{c}
0^p \\
\hline
x = \frac{y = \frac{y^2 = 0^p}{z = 0^p}}{z = 0^p}
\end{array}
\]

- If \(k \), \(y \), \(z \) exist, then by 2), 3) \(y \) contains at least one 0 and contains only 0's.
- Then \(xyyz2 \in F \) \(\notin D \)
Example: $D = \{ 1^k \mid k \geq 0 \text{ is a square} \}$

Suppose D is regular, then the PL holds for D. Let p be the PL number for D.

Consider $s = 1^{3p} \in D$.

1. $1^p \in D$, $|s| \geq 3p$
2. $1^p \in D$, since p might be non-square
3. $1^{3p} \in D$

Suppose x, y, z exist, then by 2): $|y| > 0$, let $|y| = l \geq l$

By 3): $l \leq p$

(let's look at 1):

$$|xy^iz| = p^2 + (i-1) \cdot l$$

This grows linearly with i, i.e., cannot be all squares, but squares grow quadratically.

Consider $i = 2$:

$$xy^2 = xyyz^2$$

$$|xyz^2| = p^2 + 2 \leq p^2 + p < (p+1)^2$$

Therefore $xy^2 \notin D$.
Pumping lemma for regular lang.

Example: \(E = \{ 0^i1^j \mid i > j \} \)

Suppose that \(E \) is reg. Then the PL holds for \(E \). Let \(p \) be the PL number for \(E \).

Consider \(s = 0^21^p \in E \)

If \(|s| > p \), we have \(|x| = 0 \), \(|y| = 0 \), \(|z| = 0^p1^p \).

Conditions 0), 2), 3) are satisfied.

Let's look at \(s \):

\[xy^lz = 0^{2p}1^{3p} \in E \]

i.e., we need different \(s \).

Suppose that \(x, y, z \) exist. By 3), 1):

- \(y \) contains only 0's and at least one 0

If \(i = 0 \):

- \(xy^lz = xz = 0^{ip}1^{ip} \in E \)
- \(k = k_1 \in E \)

[\(\square \)]