Regular expressions

- used for describing string patterns, e.g.

\[(0 \cup 1)0^* \quad (\{0\} \cup \{1\}) (\{0\})^*\]

\[(0 \cup 1)^* \rightarrow (\{0\} \cup \{1\})^* \quad \text{all strings over \{0,1\}}\]

Strings starting with 0 or 1 and followed by an arbitrary # 0's
Regular expressions

Formal definition:

R is a **regular expression** if R is one of the following:

1. a for some \(a \in \Sigma \),
 \[\{0, 1\} \]
2. \(\epsilon \)
3. \(\emptyset \)
4. \((R_1 \cup R_2) \), where \(R_1, R_2 \) are regular expressions
5. \((R_1 \cdot R_2) \), where \(R_1, R_2 \) are regular expressions
6. \((R_1)^* \), where \(R_1 \) is a regular expression.

Note: this type of definition is called a **recursive/inductive definition** (i.e. the definition is a recursive algorithm).
Regular expressions

For convenience: $R^+ = RR^*$

Examples: give regular expressions for the following languages:

- $\{ w \in \{0,1\}^* \mid w$ contains the substring 001 $\}$

 $(0u1)^* 0.0.1(0u1)^* \quad \text{priority of operations: } *, \cdot, \cup$

- $\{ w \in \{0,1\}^* \mid w$ does not contain two consecutive 0's $\}$

 $(01u1)^* (0u1)$

- $\{ w \in \{0,1\}^* \mid |w|$ is divisible by 2 or 3 $\}$

 $(0u1)(0u1)^* \cup (0u1)(0u1)(0u1)^*$

 OR

 $(0u1)^* \cup (0u1)^3 \cup (0u10u11)^* \cup (0u1)^3 \cup (0u10u11)^* \cup (0u1)^3 \cup \ldots \cup 111$

- $\{ w \in \{0,1\}^* \mid |w| < 4 \}$

 $(0u1u1)^3 = \varepsilon \cup 0u1 \cup 00u1 \cup 01u10u11 \cup 000u \ldots \cup 111$
Examples: let R be any regular expression

- $R \cdot \emptyset = \emptyset$
- $R \cdot \{ \varepsilon \} = R$
- $\emptyset^* = \varepsilon$
- $\{ \varepsilon \}^* = \varepsilon$

The language defined by R is denoted $L(R)$. We’ll often abuse notation and use R to denote the language $L(R)$.
Thm 1.54: A language is regular iff some regular expression describes it.

Lemma 1.55: Given a regular expression R, there exists a FA M such that $L(M) = L(R)$.

Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.
Lemma 1.55: Given a regular expression R, there exists a FA M such that $L(M) = L(R)$.

by induction (structural, i.e. on the structure of R):

BASE CASES:
1) $a \in \Sigma$ then we construct M:

\[\rightarrow \circ \rightarrow \circ \checkmark \]

2) ε

\[\rightarrow \circ \checkmark \]

3) \emptyset

\[\rightarrow \circ \checkmark \]

IND. CASES:
4) if $R = R_1 \cup R_2$ then, by IH, we have NFAs M_1 and M_2 for R_1 and R_2

by Thm 1.45 we get an NFA for $R_1 \cup R_2$

\[\rightarrow \circ \rightarrow \circ \checkmark \]

5) if $R = R_1 \cdot R_2$ then Thm 1.47

\[\rightarrow \circ \rightarrow \circ \checkmark \]

6) if $R = R_1^*$ Thm 1.49

\[\rightarrow \circ \rightarrow \circ \checkmark \]
Equivalence of reg. expr. and FA’s

Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.

Proof idea:

Generalized NFA (GNFA)

- transitions may be marked by reg. expr. (not just $\Sigma \cup \{\varepsilon\}$)
- single accept state that a) has arrows coming in from every other state, b) does not have any outgoing arrows
- start state that a) has arrows to every other state, b) does not have any incoming arrows
- all other states have arrows to all other states
Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.

Proof idea:

Generalized NFA (GNFA) $(Q, \Sigma, \delta, q_{start}, q_{accept})$ where all as usual except $\delta: (Q-\{q_{accept}\}) \times (Q-\{q_{start}\}) \rightarrow R$ where R is the set of all regular expressions over Σ.

Idea: start with a GNFA, remove states one by one and redraw arrows as necessary.

How to get a GNFA:

1) all pink arrows are \emptyset
2) new accept, transition b is it from states in T on b
3) new start, on ε to the old start
4) add all missing transitions (arrows) on \emptyset
Lemma 1.60: Given a FA M, there exists a regular expression R such that $L(R) = L(M)$.

Proof idea:

How to construct an equivalent GNFA with one fewer state?