The Halting Problem

\[A_{TM} = \{ <M,w> \mid M \text{ is a TM that accepts string } w \} \]

- Turing-recognizable? \rightarrow YES

- Turing-decidable?

NO...

we'll see why

Sec. idea: simulate M on w, if M accepts, answer TRUE (trouble: figuring out when to say FALSE)
The Halting Problem

A bit about infinite sets and their sizes (diagonalization):

Def 4.12: Let A,B be sets and let $f:A \rightarrow B$. We say that f is

- **one-to-one** if $f(a) \neq f(b)$ for every $a \neq b$
- **onto** if for every $b \in B$ there exists $a \in A$ such that $f(a)=b$

If f is one-to-one and onto, then A,B are the **same size** and f is called **correspondence**.

Example: $\mathcal{N} = \{1,2,3,4,5,...\}$ and $\{2,4,6,8,...\}$
The Halting Problem

A bit about infinite sets and their sizes (diagonalization):

Def 4.12: Let A, B be sets and let f: A → B. We say that f is
- **one-to-one** if f(a) ≠ f(b) for every a ≠ b
- **onto** if for every b ∈ B there exists a ∈ A such that f(a) = b

If f is one-to-one and onto, then A, B are the **same size** and f is called **correspondence**.

Example: \(\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\} \) and \(\{2, 4, 6, 8, \ldots\} \)

Def 4.14: A set is **countable** if it is finite or has the same size as \(\mathbb{N} \).
Are \(\mathbb{Q} \) (rational numbers) and \(\mathbb{R} \) (real numbers) countable?
Cor 4.18: There is a language that is not Turing-recognizable.
The Halting Problem

Thm 4.11: A_{TM} is not decidable.

Recall: $A_{TM} = \{ <M,w> | M \text{ is a TM that accepts string } w \}$

by contradiction, suppose decidable. Then there exist a function acceptance\((f, w)\):

outputs TRUE iff $f(w) = \text{TRUE}$ (not a pseudocode).

Create another function:

weird\((f)\):

\[
\begin{align*}
\text{if } \text{acceptance}\((f, f)\) = \text{TRUE}, & \text{ return } \text{FALSE} \\
\text{else, return } \text{TRUE}
\end{align*}
\]

then, what happens if Weird\((\text{weird})\):

outputs FALSE if $\text{acceptance}\((\text{weird, weird})\) = \text{TRUE}$ (i.e. weird\((\text{weird})\) = TRUE)

TRUE if $\text{acceptance}\((\text{weird, weird})\) = \text{FALSE}$ (i.e. weird\((\text{weird})\) = FALSE or infinite output)

A PARADOX! acceptance cannot exist \Box
The Halting Problem

Thm 4.22: A language L is decidable iff L is Turing-recognizable and \overline{L} is Turing-recognizable (we say that L is co-Turing-recognizable).

If: \Rightarrow then immediately also \overline{L}-recognizable and co-\overline{L}-recognizable b/c. just swap accept & reject

\Leftarrow TM T_1 for L (accepts all strings in L, might do infinite computation for strings $\notin L$)

TM T_2 for \overline{L} (if L)

idea for a TM-decider T: run T_1, T_2 in parallel (at the same time, e.g., using 2 tapes)

if T_1 accept, accept

T_2 accept, reject

Cor 4.23: A_{TM} is not Turing-recognizable.

be L if A_{TM} is \overline{L}-recognizable. and we know that A_{TM} is \overline{L}-recognizable, then by Thm 4.22, A_{TM} would be decidable.