- what if a TM has more tapes? several heads?

This section: we’ll give detailed descriptions of our machines but not give detailed δ-functions.
Multitape Turing Machines

- have to redefine δ-function:

$$\delta : Q \times \Gamma \times \Gamma \rightarrow Q \times \Gamma \times \{L,R,S\} \times \{L,R,S\}$$

2nd tape
1st tape

Thm 3.13: Every multitape TM has an equiv. single-tape TM.

Note:
- TM accepts if $q = q_{\text{accept}}$
- if 1st tape wants to rewrite 0, then need to shift the 2nd tape to the right

Standard TM: place tapes after each other

New states:
- contain, multitape state (q)
- symbol read on the 1st tape (a)
- symbol on the 2nd tape (b)

Symbol for the tape separator

1) scan to find the 2 dotted symbols a, b
2) state knows q, then can simulate $\delta(q,a,b)$
3) scan to replace $a \rightarrow c_1$, $b \rightarrow d$ and update dotted symbols based on the direction L,R,S
4) update state info (q)
Nondeterministic Turing Machines

- have to redefine δ-function:

$$\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R, s\})$$

Thm 3.16: Every nondeterministic TM has an equivalent deterministic TM.

idea:

configuration computation tree for NTM:

DTM:

1) shift the input w to the right and precede it by q_0, after input $#$
2) underline the configuration (current config)
3) for the current config,
 - place all subsequent config. at the end of the tape, delimited by $#$
4) back to the current (underlined config.)
5) ununderline the config & underline the next one
6) repeat 3) until find q_{accept}
An alternative name for Turing-recognizable languages is **recursively enumerable** languages.

An enumerator is a TM-like “printer” with no input and an extra output tape that prints all strings in a given language.

For a TM, let’s create an enumerator printing the same lang.

Idea 1:
1) Start w. ε, simulate TM, if accepts, print ε, if rejects move to 2)
2) Generate the next string in the lexicographic ordering, run 1) on that string

Problem: what if the TM does not halt on a string (but there are strings accepted later in the lexic. ordering)

Idea 2:
- $\text{go } \#a \#b \#a a$
- 1 step
- 1 step
- 1 step 1 step 1 step

Next: add a new string, perform 1 step of the TM on all strings

\Rightarrow if accept, print the string.
Thm 3.21: A language is Turing-recognizable iff there is an enumerator for it.