Nonregular languages

Which of these languages are regular?

- \(B = \{ 0^n1^n \mid n \geq 0 \} \) \(\text{not regular} \)
- \(C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \} \) \(\text{not regular} \)
- \(D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \} \) \(\text{regular} \)
Which of these languages are regular?

- B = \{ 0^n1^n \mid n \geq 0 \}
- C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \}
- D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \}

Proof by closure properties:

\text{[not in the book]}
Suppose we have a DFA with p states.

Suppose there is a string of length $> p$ that is accepted. Are there other strings that are accepted?
Thm 1.70 [pumping lemma]:

Let \(A \) be a regular language. Then there exists a number \(p \) s.t. for every string \(s \in A \) of length \(\geq p \) there exist strings \(x, y, \) and \(z \) s.t.

0. \(s = xyz, \)

1. For each \(i \geq 0, \) \(xy^iz \in A, \)

2. \(|y| > 0, \) and \(i.e. y \neq \varepsilon \)

3. \(|xy| \leq p. \)
Pumping lemma for regular lang.

Example: \(B = \{ 0^n1^n \mid n \geq 0 \} \)

by contradiction, assume \(B \) is regular
then, the PL holds for \(B \). Let \(p \) be the PL number for \(B \).

it suffices to find one \(s \in B \) and \(|s| > p \) s.t. the 3 conditions cannot hold simultaneously.

consider \(s = 0^p1^p \)

and consider \(x, y, z \) satisfying conditions 0)-3)

then, by 3) \(|xy| \leq p \) and hence, \(xy \) contain only 0's

2) \(y \neq \epsilon \)

1) \(\forall i \geq 0 \ xy^i z \in B \) take \(i = 2 \) then \(xy^2z = xyyz \rightarrow \) will contain \(p + 1 \) 0's

\[= p + |y| \geq p + 1 \]

hence \(xyyz \notin B \)
Example: $C = \{ w \mid w \text{ has equal number of 0's and 1's} \}$

by contradiction, assume C regular, let p be the PL number.

consider $s = 0011011 \not \in C$ we do not want this guy

$s = 0^p10^p0 \not \in C$ don't like

$s = 0011 \not \in C$ we do not want this guy since it might be shorter than p

$S = 0^p1^p$

argument same as for B

$S = \underbrace{0}_{i=2} \underbrace{1}_{i=0} \underbrace{0}_{i=1} \underbrace{1}_{i=1} \underbrace{0}_{i=1} \underbrace{1}_{i=1} \underbrace{0}_{i=1} \underbrace{1}_{i=1}$
Example: $F = \{ ww \mid w \in \{0,1\}^* \}$

by contradiction, assume F is regular. Let p be the PL number.

consider $s = 0^p1^p0^p1^p \in F \checkmark$

$|s| \geq p \checkmark$

we need to show that the conditions 0)-3) cannot hold simultaneously.

Suppose the conditions hold:

by 3) $|xy| \leq p$ i.e. xy contain only 0's

2) $y \neq \varepsilon$

1) take $i = 2$: $xy^2z \in F$

$s = \overline{0101}$

$xy^2z = \overline{01011}$
Pumping lemma for regular lang.

Example: \(D = \{ 1^k | k \geq 0 \text{ is a square} \} \)

Suppose, by contradiction, that \(D \) is regular, then let \(p \) be the PL number.

Consider \(s = 1^{p^2} \in D \) \(\checkmark \)

\(|s| = p \) \(\checkmark \)

Suppose 0)-3) hold

by 3) \(|y| \leq p \)

2) \(|y| > 0 \)

1) Consider \(i = 2 \): \(xy^2z = xyyz = 1^{p^2 + |y|} \)

\[p^2 \leq p^2 + |y| \leq p^2 + p \]

The next square is \((p+1)^2 \)

\[
\frac{p^2 + 2p + 1}{p^2 + 2p + 1}
\]

\(xy^2z \in D \) \(\checkmark \)
Example: \(E = \{ 0^i1^j \mid i > j \} \)

Suppose, by contradiction, that \(E \) is regular. Let \(p \) be the PL number.

Consider
\[
 s = 0^{p+1}1^p \in E \quad \checkmark
\]
\[
 |s| > p \quad \checkmark
\]

Suppose 0)-3) hold:

by 3) \(|xy| \leq p \), i.e. \(xy \) contain only 0's

2) \(y \neq \varepsilon \)

1) \(i = 0 \quad xy_1^iz = xz \) - contains \(p \) 1's

\(xz \in E \quad \leq p \) 0's