Problem 1
Let \(L = \{ a^i b^j c^i | i, j \geq 0 \} \). Use closure properties of regular languages to show that \(L \) is not regular. Assume that for every two symbols \(\sigma_1 \neq \sigma_2 \), the language \(\{ \sigma_1^k \sigma_2^k | k \geq 0 \} \) is not regular. Do not refer to any other non-regular languages in your proof.

Problem 2
Let \(L = \{ a^i b^j a^i | i, j \geq 0 \} \).

(a) Use the pumping lemma to show that \(L \) is not regular.

(b) Find infinitely many strings that are pairwise distinguishable by \(L \) (i.e., find infinitely many equivalence classes of the indistinguishability by \(L \) relation). For every pair of strings show that they are distinguishable by \(L \).

Problem 3
Exercise 1.49, page 90.

Problem 4
(a) Draw a minimum DFA for \((aa)^* b^* \).

(b) Prove that your DFA is of minimum size. You can use the minimization algorithm from class (see also page 299) or you can use the Myhill-Nerode Theorem.

Problem 5
Let \(L = \{ wtw | w, t \in \{0, 1\}^+ \} \). Prove that \(L \) is not regular.

Problem 6
Regular expressions and finite automata and their variations are used in all areas of computer science. Find a nice application, write a short summary (100-200 words), and give a link to a website with further explanation of the application. Submit the summary and the link in a single html file in the special MyCourses dropbox. Include your name(s) and the title of your application. I will post a merged html of all the applications at the course website.