Problem 1

Let A, B, and C be languages over some alphabet Σ. For each of the following statements, answer “yes” if the statement is always true, and “no” if the statement is not always true. If you answer “no,” provide a counterexample.

(a) $(AB)C \subseteq A(BC)$.
(b) $(AB)C \supseteq A(BC)$.
(c) $A(B \cap C) \subseteq AB \cap AC$.
(d) $A(B \cap C) \supseteq AB \cap AC$.
(e) $A(B \cup C) \subseteq AB \cup AC$.
(f) $A(B \cup C) \supseteq AB \cup AC$.
(g) $A^* \cap B^* \subseteq (A \cap B)^*$.
(h) $A^* \cap B^* \supseteq (A \cap B)^*$.
(i) $A^* \subseteq (A^*)^*$.
(j) $A^* \supseteq (A^*)^*$.
(k) $A^*B^* \subseteq (AB)^*$.
(l) $A^*B^* \supseteq (AB)^*$.

Problem 2

Draw the state diagram of a finite automaton that accepts the language of all strings over \{a, b\} that contain an even number of a’s and the number of b’s is not divisible by 3. Your finite automaton should not be overly complicated.
Problem 3
Draw the state diagram of a finite automaton that accepts the language of all strings over \{a, b\} that contain exactly one occurrence of the string baba as a substring (containing bababa counts as two occurrences of baba). Your finite automaton should not be overly complicated.

Problem 4
Draw the state diagram of a finite automaton that accepts the language of all strings over \{0, 1, 2, \ldots, 9\} that represent decimal numbers divisible by 3. Leading zeros are not allowed and the empty string should not be accepted. Your finite automaton should not be overly complicated.

Problem 5
Draw the state diagram of a finite automaton that accepts the language \emptyset.

Problem 6
Draw the state diagram of a finite automaton that accepts the language \{\varepsilon\}.

Problem 7
Let \(k\) be a positive integer constant. Let \(L_k\) be the language over \{a, b\} defined as follows:
\[
L_k = \{w \in \{a, b\}^* \mid w \text{ contains at least } k \text{ a’s.}\}
\]
For example, \(L_2\) is the language of all strings over \{a, b\} that contain at least two a’s.

(a) Draw the state diagram of a finite automaton that accepts \(L_5\).

(b) Give the 5-tuple (and specify all its elements, including the transition function) that describes your finite automaton from part (a).

(c) Give a 5-tuple specifying finite automaton \(M_k\) such that \(L(M_k) = L_k\).