Def 7.1: Let M be a deterministic TM that always halts. The **running time** (or **time complexity**) of M is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the max number of steps M takes on any input of length n.

Note: we usually use the big-O notation, instead of precisely determining f.

Def 7.7: The **time complexity class** $\text{TIME}(t(n))$ is the collection of languages that have an $O(t(n))$ deterministic decider (TM that always halts).
Measuring Complexity

What about nondeterministic TMs?

many possible comput. paths

we'll bound the length of all comput. paths
to define nondet. running time
What about nondeterministic TMs?

Def 7.9: Let N be a nondeterministic decider. The **running time** of N is the function $f : N \to N$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n.

Thm 7.11: Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$-time nondeterministic single-tape TM has an equivalent c^n-time deterministic single-tape TM.

where $c \approx \max_{q,r} |\delta(q,r)|$