Reductions: if we can reduce (transform) problem A into a problem B, then solving problem B gives solution to problem A.

Example: $\text{HALT}_{\text{TM}} = \{ <M, w> \mid M \text{ is a TM that halts on } w \}$

Thm 5.1: HALT_{TM} is undecidable.

Note: HALT_{TM} is the halting problem, A_{TM} is the acceptance problem.
Thm 5.1: E_{TM} is undecidable, where

$$E_{TM} = \{ <M> | M \text{ is a TM and } L(M) = \emptyset \}$$

We'll reduce A_{TM} to E_{TM}.

If we had such a green TM decider, we would be able to decide A_{TM}. By contradiction, A_{TM} is undecidable.

\Rightarrow green box cannot exist!
Thm 5.3: REGULAR\textsubscript{TM} is undecidable, where

\[\text{REGULAR}\textsubscript{TM} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

We will reduce \(A_{TM} \) to \(\text{REGULAR}_{TM} \):

1. If input of the form \(a^n b^n \) for some \(n \geq 0 \), then input \(\epsilon \) and run \(M \) on \(\epsilon \).
2. If input not of the form \(a^n b^n \), reject.

Thus, if we have a TM decider for \(\text{REGULAR}_{TM} \), then have a TM decider for \(A_{TM} \), contradiction.

\(\uparrow \) Undecidable
Thm 5.4: \(\text{EQ}_{\text{TM}} \) is undecidable, where

\[
\text{EQ}_{\text{TM}} = \{ <M_1,M_2> \mid M_1, M_2 \text{ are TM's and } L(M_1) = L(M_2) \}
\]
Thm 5.4: $\textit{ALL}_{\textit{CFG}}$ is undecidable, where

$$\textit{ALL}_{\textit{CFG}} = \{ <G> \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$$