The Halting Problem

\[A_{TM} = \{ <M,w> \mid M \text{ is a TM that accepts string } w \} \]

- Turing-recognizable? - \textbf{YES} \\
- Turing-decidable? \\
 - No, we'll see why \\

with a function-type view:

\[
\begin{align*}
\text{def} & \quad \text{acceptance} \ (\text{fnc M, string w}): \\
& \quad \text{return} \quad M(w)
\end{align*}
\]

i.e. the TM for \(A_{TM} \) simulates \(M \) on \(w \),

if \(M \) accepts, this TM accepts
A bit about infinite sets and their sizes (diagonalization):

Def 4.12: Let \(A, B \) be sets and let \(f: A \rightarrow B \). We say that \(f \) is
- **one-to-one** if \(f(a) \neq f(b) \) for every \(a \neq b \)
- **onto** if for every \(b \in B \) there exists \(a \in A \) such that \(f(a) = b \)

If \(f \) is one-to-one and onto, then \(A, B \) are the **same size** and \(f \) is called **correspondence**.

Example: \(\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\} \) and \(\{2, 4, 6, 8, \ldots\} \)

\[f(n) = 2n \]
The Halting Problem

A bit about infinite sets and their sizes (diagonalization):

Def 4.12: Let A, B be sets and let $f : A \rightarrow B$. We say that f is
- **one-to-one** if $f(a) \neq f(b)$ for every $a \neq b$
- **onto** if for every $b \in B$ there exists $a \in A$ such that $f(a) = b$

If f is one-to-one and onto, then A, B are the **same size** and f is called **correspondence**.

Example: $\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$ and $\{2, 4, 6, 8, \ldots\}$

Def 4.14: A set is **countable** if it is finite or has the same size as \mathbb{N}.
The Halting Problem

Are \(\mathbb{Q} \) (rational numbers) and \(\mathbb{R} \) (real numbers) countable?

\(\mathbb{Q} \) can be ordered, i.e., it is countable.

\(\mathbb{R} \) by contradiction, suppose there is an ordering of the numbers in \(\mathbb{R} \).

E.g.,

\[
\begin{align*}
0.\hspace{1em}000123 & \hspace{1em} 0.1341 \ldots \\
0.\hspace{1em}1201395 & \\
1.235 & \\
2.106 & \\
& \\
& \\
&
\end{align*}
\]

For the \(i \)-th number, look at the \(i \)-th position after the decimal point, choose a different digit, create a number of all these digits.

\(\) differs from all listed numbers.
Cor 4.18: There is a language that is not Turing-recognizable.

We will show that the set of all languages is uncountable.

Lexicographical ordering:

$L_1 = \{ \epsilon, a, aa \}$
$L_2 = \{ a, a^2, a^3 \}$
$L_3 = \{ \epsilon, a^4, a^5, a^6 \}$

Remark:

Any one language is countable because lexicographic ordering.

Create L s.t. looking at the i-th language, the i-th string:

- If the string is in L_i, we do not include it in L.
- If it is not in L_i, we include it in L.

Now L differs from all L_i's \Rightarrow not on the list \nexists.

Notice that every TM can be described (encoded) as a string \Rightarrow #TM is countable.

#Languages is uncountable.
Thm 4.11: A_{TM} is not decidable.

Recall: $A_{TM} = \{ <M,w> | M \text{ is a TM that accepts string } w \}$

By contradiction, assume that A_{TM} is decidable.

Argument with functions:
- We have a function $\text{acceptance}(M,w)$ that returns true/false.
 - returns true if $M(w)$ returns true.
 - returns false otherwise (i.e., if $M(w)$ returns false, or keeps running).
- Note: acceptance cannot simulate M, it is assumed to be doing some magic.

```haskell
def crazy (func X):
    run acceptance (X,X)
    return true if returns false
    return false if true
```

we can not have a func for acceptance
(undecidable)
Thm 4.22: A language L is decidable iff L is Turing-recognizable and L^c is Turing-recognizable (we say that L is **co-Turing-recognizable**).

Let M_1 be a TM for L,
M_2 for L^c

Then we create M that simulates M_1, M_2 simultaneously (e.g. on 2 tapes)
- when M_2 accepts, M accepts
- M_2 accepts, M rejects

For any input, either M_2 or M_2 accepts.

Cor 4.23: A_{TM}^c is not Turing-recognizable.

Recall A_{TM} is T-recognizable and undecidable, thus A_{TM}^c cannot be T-recognizable.
because if it were then A_{TM} decidable by Thm 4.22