Which of these languages are regular?

- \(B = \{ 0^n1^n \mid n \geq 0 \} \times \)
- \(C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \} \times \)
- \(D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \} \textbf{ regular: } (1^*01^*)^*1^*u(0^*1^*)^*0^* \)

\(B \) is not regular:

Suppose, by contradiction, that \(B \) is regular and let \(M \) be a DFA for \(B \). Consider strings of the form \(0^k \) for a countably infinite number of such strings, but a finite number of states, thus:

- There must be \(0^k1^l \) and \(0^k \) ends in the same state as \(0^l \).
- \(0^k1^l \) should be accepted.
- \(0^k1^l \) shouldn't be accepted but they go together (contradiction).
- So, \(M \) cannot exist for \(B \).
Nonregular languages

Which of these languages are regular?

- \(B = \{ 0^n1^n \mid n \geq 0 \} \)
- \(C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \} \)
- \(D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \} \)

Proof by closure properties:

We'll show that \(C \) is not regular, assuming that \(B \) is not regular. If \(C \) is regular, this must be regular because regular languages are closed under \(\cap \).

\[
B = C \cap 0^*1^* \quad \text{regular}
\]

\(\uparrow \)

by contradiction, assume \(C \) is regular

\(\therefore \) contradiction, \(B \) is known to be nonregular
Pumping lemma for regular lang.

Suppose we have a DFA with p states.

Suppose there is a string of length $> p$ that is accepted. Are there other strings that are accepted?

Since xyz is accepted and y starts and finishes in the same state (there always is such a y because we have only p states so a state must be repeated on the computation path of xyz since $|xyz| > p$), then $xyyz$ is also accepted; also xz is accepted (skip the loop).

Thus xy^iz is accepted for $i \geq 0$.
Thm 1.70 [pumping lemma]:

Let A be a regular language. Then there exists a number p s.t. for every string $s \in A$ of length $\geq p$ there exist strings $x, y,$ and z s.t.

0. $s = xyz,$
1. For each $i \geq 0,$ $xy^iz \in A,$
2. $|y| > 0,$ and
discussed on the previous slide
3. $|xy| \leq p.$

\[\text{Reading } |xy| \text{ symbols means that we go through } |xy|+1 \text{ states} \]
\[\text{Thus, going through the first } p \text{ symbols means that we visit } p+1 \text{ states, thus there must be a repeating state defining } y \]
\[\Rightarrow |xy| \leq p \]
Example: \(B = \{ 0^n1^n \mid n \geq 0 \} \)

nonregular, we'll show this by contradiction:

Suppose regular, then the PL holds; let \(p \) be the PL constant for \(B \)

the PL needs to hold for \(s = 0^p1^p \) verify: \(s \in B \) √

\(|s| \geq p \) √

\[S = \begin{array}{cccc}
& & & P \\
& 0 & \ldots & 0 & 1 & \ldots & 1 & \text{there should be a split of } s \text{ into } x, y, z \\
\end{array} \]

\[x \quad y \quad z \]

Case analysis:

if \(y \) contains both 0's and 1's, then \(xyz^2 = 0^{p-1}10^{p-1}1 \) \& \(B \)

if \(y \) contains only 0's, then \(xyz^2 \) contains more zeros than ones \& \(B \)

if \(y \) contains only 1's, same argument as for 0's \& \(B \)

Thus, no such \(x, y, z \) for our \(s \) \(\Rightarrow \) PL does not hold \(\Rightarrow \) \(B \) is not regular
Pumping lemma for regular lang.

Example: \(C = \{ w \mid w \text{ has equal number of 0's and 1's} \} \)

Suppose \(C \) is regular, then the PL holds, let \(p \) be the PL constant.

Let \(s = 0^p1^p \in C \), \(|s| = 2p \geq p \)

Same argument as before works.

\[s = \underbrace{0 \ldots 0}_{P} \underbrace{1 \ldots 1}_{P} \]

By 3) \(xy \) contains only zeros.

Let \(i = 2 \), then \(xy^2 \) contains more zeros than ones \(\notin C \)

\(\sqrt{ } \) contradiction, with \(C \) regular.
Example: \(F = \{ ww \mid w \in \{0,1\}^* \} \)

Suppose \(F \) is regular. Then the PL holds, let \(p \) be the PL constant.

Goal: Find \(s \) that results in a contradiction.

Let \(s = 01^p01^p \in F \), \(|s| = 2p+2 \geq p \)

Do there exist \(x, y, z \)?

Case analysis:
- \(y \) either contains the first 0 and some of the first set of ones
 - \(i = 2 \): \(xy^kz = 01^m01^01^p \) where \(m < p \) \& \(F \)
- or none
- \(y \) contains some of the first set of ones
 - Then \(i = 2 \): \(xy^kz = 01^m01^p \) where \(m \geq p+1 \) \& \(F \)

\[s = \begin{array}{c}
01 \ldots 1 \\
|y| \\
\ldots \\
01 \ldots 1 \\
z
\end{array} \]
Example: \(D = \{ 1^k \mid k \geq 0 \text{ is a square} \} \)

Suppose \(D \) is regular, then the PL holds, let \(p \) be the PL constant.

Let \(s = 1^p \).

Do there exist \(x, y, z \)?

If yes:\n\[x = 1^k, \quad y = 1^l, \quad z = 1^{p^2-k-l} \]

By 2): \(l > 0 \)

3) \(k+l \leq p \)

By 1): let \(i = 2 \): \(xyyz = 1^{p^2+l} \)

Cannot be a square length since the next square after \(p^2 \) is \(p^2+2p+1 \)

But \(l \leq p \)

\(\in D \)
Pumping lemma for regular lang.

Example: \(E = \{ 0^k1^j | k > j \} \)

not regular: by contradiction, suppose regular, let \(p \) be the PL constant

| Let \(S = 0^{p+1}1^p \in E \) ✓ |
| \(|S| = 2p + 1 \geq p \) ✓ |

\[
S = \begin{array}{ccc}
0 & \cdots & 0 \\
1 & \cdots & 1 \\
\end{array}
\]

if there are \(x, y, z \) satisfying 0) 2) 3):

by 0) \(S = xy^2 \)

2) \(y \neq \varepsilon \)

3) \(xy \) contains only 0's

1) if \(i \geq 1 \), then \(xy^i z \in E \) ✓ not helpful for the contradiction

let \(i = 0 \), then \(xy^i z = xz \) contains \(\leq p \) zeros \(= p \) ones \& \(E \) ✓