Thm 7.27 [Cook-Levin]: SAT is in P iff P = NP.

SAT is a problem that:
- input a formula \(\varphi \)
- output: YES if \(\varphi \) is satisfiable, i.e. there exists a T/F assignment to the variables s.t. \(\varphi \) is True
- NO otherwise

Alternatively:
\[
\text{SAT} = \{ \varphi \mid \varphi \text{ is satisfiable} \}
\]

Thus, restated (implication \(\Rightarrow\))
if SAT can be solved in polynomial time, then \(P = NP \), i.e. every problem in NP can be solved in poly-time.

notice: SAT \(\in \text{NP} \) because we guess the T/F assignment to the variables and then we verify whether \(\varphi \) is True

PS: most people believe \(P \neq NP \)
Def 7.29: Language A is **polynomial-time reducible** to language B, written $A \leq_p B$, if a polynomial-time computable function $f : \Sigma^* \rightarrow \Sigma^*$ exists such that for every w,

$$w \in A \iff f(w) \in B$$

The function f is called **polynomial-time reduction** of A to B.

Thm 7.31: If $A \leq_p B$ and $B \in P$, then $A \in P$.

Pf:

[Diagram showing the reduction process from A to B with $f(w)$ leading to the decision of $B \in P$.]
Thm 7.32: 3SAT is polynomial-time reducible to CLIQUE, where

$$3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3-cnf formula} \}.$$
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:

- B is in NP, and
- every A in NP is polynomial-time reducible to B.

Example of a NP-complete problem:

SAT
(bec. of the Cook-Levin thm)
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:
- B is in NP, and
- every A in NP is polynomial-time reducible to B.

Thm 7.35: If B is NP-complete and $B \in P$, then $P = NP$.

Solving one NP-complete problem in P implies that every problem in NP can be solved in P (polynomial-time).

Thus, NP-complete problems are the "hardest" problems in NP.
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:
- B is in NP, and
- every A in NP is polynomial-time reducible to B.

Thm 7.36: If B is NP-complete and $B \leq_p C$ for some $C \in \text{NP}$, then C is NP-complete.
Def 7.34: A language B is **NP-complete** if it satisfies both conditions:

- B is in NP, and
- every A in NP is polynomial-time reducible to B.

Thm 7.37 [Cook-Levin]: SAT is NP-complete.

Note: a long list of known NP-complete problems.