Def 7.1: Let M be a deterministic TM that always halts. The **running time** (or **time complexity**) of M is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the max number of steps M takes on any input of length n.

Note: we usually use the big-O notation, instead of precisely determining f

example: estimate the running time of the TM for $\{ a^k | k \geq 0 \}$

Def 7.7: The **time complexity class** $\text{TIME}(t(n))$ is the collection of languages that have an $O(t(n))$ deterministic decider (TM that always halts).
What about nondeterministic TMs?

Several possible computation paths
(imagine them being executed in parallel)

→ the longest defines the (nondet) running time of the TM
Def 7.9: Let N be a nondeterministic decider. The **running time** of N is the function $f: \mathbb{N} \to \mathbb{N}$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n.

Thm 7.11: Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ nondeterministic single-tape TM has an equivalent ______-time deterministic single-tape TM.