Reductions: if we can reduce (transform) problem A into a problem B, then solving problem B gives solution to problem A.

Example: \(\text{HALT}_{TM} = \{ <M, w> \mid M \text{ is a TM that halts on } w \} \)

Thm 5.1: \(\text{HALT}_{TM} \) is undecidable.

Note: \(\text{HALT}_{TM} \) is the **halting problem**, \(\text{A}_{TM} \) is the **acceptance problem**.
Thm 5.1: E_{TM} is undecidable, where

$$E_{TM} = \{ \langle M \rangle \mid M \text{ is a } TM \text{ and } L(M) = \emptyset \}$$

Diagram:

- **Create M_{wst}:**
 1. erase the tape
 2. write w on the tape
 3. run M

- **E_{TM}**
 - accept if $L(M) = \emptyset$
 - reject otherwise

- **A_{TM}**
 - accept if M accepts w
 - reject if M rejects w

Goal: give an algo for A_{TM} assuming we have a green box for E_{TM}

- When does M_w accept its input? if M accepts w
- What is $L(M_w) = \{ \Sigma^* \}$ if M accepts w
 - \emptyset if M does not accept w
Thm 5.3: \(\text{REGULAR}_{TM} \) is undecidable, where

\[
\text{REGULAR}_{TM} = \{ <M> \mid M \text{ is a TM and } L(M) \text{ is regular} \}
\]
Thm 5.4: EQ_{TM} is undecidable, where

$\text{EQ}_{TM} = \{ <M_1,M_2> | M_1,M_2 \text{ are TM's and } L(M_1)=L(M_2) \}$
Thm 5.4: ALL_{CFG} is undecidable, where

$$ALL_{CFG} = \{ <G> \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$$