The Halting Problem

\[A_{TM} = \{ <M,w> \mid M \text{ is a TM that accepts string } w \} \]

- Turing-recognizable? \text{YES}
- Turing-decidable?
 NO \text{we'll see}

write a Python function that
- input:
 a description of a TM M
 and a string w
- output True if w accepted by M
 (enough for T-recognizable)
- output True if w accepted by M
 False o/w
 \rightarrow for T-decidable

intuition:
don't know when to say False

T-decidable
T-recognizable

TM
A bit about infinite sets and their sizes (diagonalization):

Def 4.12: Let A, B be sets and let $f: A \to B$. We say that f is
- **one-to-one** if $f(a) \neq f(b)$ for every $a \neq b$
- **onto** if for every $b \in B$ there exists $a \in A$ such that $f(a) = b$

If f is one-to-one and onto, then A, B are the **same size** and f is called **correspondence**.

Example: $\mathbb{N} = \{1,2,3,4,5,\ldots\}$ and $\{2,4,6,8,\ldots\}$

$f: \mathbb{N} \to \{2,4,6,8,\ldots\}$ $\quad f(x) = 2x$
The Halting Problem

A bit about infinite sets and their sizes (diagonalization):

Def 4.12: Let \(A, B \) be sets and let \(f: A \rightarrow B \). We say that \(f \) is
- **one-to-one** if \(f(a) \neq f(b) \) for every \(a \neq b \)
- **onto** if for every \(b \in B \) there exists \(a \in A \) such that \(f(a) = b \)

If \(f \) is one-to-one and onto, then \(A, B \) are the **same size** and \(f \) is called **correspondence**.

Example: \(\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\} \) and \(\{2, 4, 6, 8, \ldots\} \)

Def 4.14: A set is **countable** if it is finite or has the same size as \(\mathbb{N} \).
Are \(\mathbb{Q} \) (rational numbers) and \(\mathbb{R} \) (real numbers) countable?

- **YES**

Consider \(\mathbb{Q}_{\geq 0} \):

- integers
- \(\frac{1}{2} \) that is not an integer
- \(\frac{2}{3} \) that has not been used above
- \(\frac{3}{4} \) — 11

We need to describe \(f: N \to \mathbb{Q}_{\geq 0} \) one-on-one onto

\[Q_{\geq 0} \text{ same size as } N \]

Now, \(f \) is defined by the yellow line.
The Halting Problem

[Section 4.2]

Are \(\mathbb{Q} \) (rational numbers) and \(\mathbb{R} \) (real numbers) countable?

No

Suppose \(\mathbb{R} \) is countable.

\(\rightarrow \) we have one-on-one onto \(f : \mathbb{N} \rightarrow \mathbb{R} \)

\[
\begin{align*}
f(0) &= 3.01415 \\
f(1) &= 2.58556 \\
f(2) &= 11.400 \\
f(3) &= \ldots
\end{align*}
\]

we will construct a number that is not being mapped to by \(f \):

0.261 etc.

\(\uparrow \)

differ from the first decimal digit in \(f(0) \)
diff. from the second dec. digit in \(f(1) \)
the i-th dec. digit diff than i-th dec. digit in \(f(i-1) \)

\(\Rightarrow \) number not mapped to \(\Rightarrow \) \(f \) not onto.
Cor 4.18: There is a language that is not Turing-recognizable.

Idea:
- The set of Turing-recognizable languages is countable.
 - Every Turing-recognizable language can be described by a TM.
 - Every TM can be described by a string of 0's and 1's.

- The set of all strings is countable.

Just list the strings in lexicographical order:
- \(\emptyset, 0, 1, 00, 10, 11, 000, 001, 010, 011, \ldots \)

Set of all languages is uncountable.
- Suppose not.
- We have a function \(f \) onto one-on-one:
 \[N \rightarrow \text{all languages} \]
- \(f(0) = \{ \emptyset, 0, 1, 111 \} \)
- \(f(1) = \{ 0, 00 \} \)
- \(f(2) = \{ 0, 111, 1111, \ldots \} \)

We construct a language that is not being mapped by \(f \).
- \(f(0) \) includes \(\emptyset \), my lang will not.
- \(f(0) \) includes 0, my lang will not.
The Halting Problem

Thm 4.11: A_{TM} is not decidable.

Recall: $A_{TM} = \{ <M,w> \mid M$ is a TM that accepts string $w \}$

Recall that A_{TM} is T-recognizable.

Here we say NOT T-decidable.

Pf: by contradiction, suppose decidable, i.e. we have a func (TM that always finishes) that decides whether a given M accepts a given w.

Let's create a func weird (M):

- accept if M does not accept M (return True)
- reject if M does accept M (return False)

What happens if: weird (weird)

- accepts if weird does not accept weird
- rejects if weird does accept weird

Let's call it decideAccept (M,w)

Weird does not run M, it simply calls decideAccept (M,M)

Def weird (M):

- return not decideAccept (M,M)

// contradiction - decideAccept cannot exist!
Thm 4.22: A language L is decidable iff L is Turing-recognizable and L^c is Turing-recognizable (we say that L is co-Turing-recognizable).

If: \Rightarrow want: if L is T-decidable then L is T-recognizable and L^c is T-recognizable.

\[\Rightarrow \text{immediately follows: T-recognizable} \]

\[\text{To show } L \text{ is T-recognizable: take } T \text{ and switch } q_{accept} \text{ and } q_{reject}. \]

\Leftrightarrow if I have a TM T_1 for L and T_2 for L^c then we want to construct T for L s.t. T always gets to either q_{accept} or q_{reject}.

Let's suppose that T has 2 tapes (equivalent to regular TM)

- Tape 1: simulate T_1
- Tape 2: simulate T_2

}\simultaneously$

\Rightarrow if T_1 accepts, accept; if T_2 accepts, reject \Leftrightarrow one of them has q_{accept}, i.e. we always either accept or reject.