Nonregular languages

Which of these languages are regular?

- $B = \{ 0^n1^n \mid n \geq 0 \}$ not regular, we'll see why
- $C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of } 0\text{'s and } 1\text{'s } \}$
- $D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of } 01\text{'s and } 10\text{'s as substrings } \}$
Nonregular languages

Which of these languages are regular?

- \(B = \{ 0^n1^n \mid n \geq 0 \} \)
- \(C = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 0's and 1's} \} \)
- \(D = \{ w \in \{0,1\}^* \mid w \text{ has equal number of 01's and 10's as substrings} \} \)

Proof by closure properties:

We showed that regular lang. are closed under: \(\cup, \cdot, *, \cap, \text{ complement} (\neg) \)
we will show: if \(B \) not regular, then \(C \) not regular
i.e., contrapositive: if \(C \) is regular, then \(B \) is regular

IDEA: using closure properties, we'll construct \(B \) from \(C \)

\[B = C \cap a^*b^* \]

assumed reg.
intersection of (supposedly) reg. lang.
\(\Rightarrow \) a regular lang. \((B) \)
Suppose we have a DFA with p states.

Suppose there is a string of length > p that is accepted. Are there other strings that are accepted?

The strings that are accepted are:

- u^*v^*w

Notice that if a string is > p, we have a repetition.

Thus $|uv| \leq p$

$X = x_1x_2...x_k$

where $k \geq p$

X during its computation goes through a sequence of $k+1$ states, i.e. some states must repeat.
Thm 1.70 [pumping lemma]:

Let A be a regular language. Then there exists a number p s.t. for every string $s \in A$ of length $\geq p$ there exist strings $x, y,$ and z s.t.

0. $s = xyz,$
1. For each $i \geq 0$, $xy^iz \in A,$
2. $|y| > 0$, and
3. $|xy| \leq p.$

Note:

previous page, we started with x and chopped it into u,v,w

Here we are chopping s into x,y,z.

We'll be using the PL to show that A is not regular.

Recipe: assume A is regular. Then the PL holds for A. Thus, if we find s, longer than p that does not satisfy (0)-(3) \Rightarrow PL does not hold for A \Rightarrow it is not regular.

Example: \(B = \{ 0^n1^n \mid n \geq 0 \} \)

we'll show \(B \) is not regular

by contradiction, assume \(B \) is regular. thus the PL holds.

I.e. there exists \(p \), the pumping lemma constant (for \(B \)).

Idea: show that there is a string \(s \in B \) of length \(2p \) s.t. \(s \) does not satisfy 0)-3).

let's take \(s = 0^p1^p \in B \). √

is \(s \) longer than \(p \)? √

let's try to make 0)-3) hold:

by 3) we know that \(xy \) contain only 0's

2) \(y \) contains at least one zero

1) \(xy^iz \) for \(i=2 \)

\[s = 0^p1^p \]

\[s = xy^i\tilde{z} \]

\(x \) has exactly \(p \) ones \(\tilde{z} \) has more than \(p \) zeros

therefore \(xyyz \notin B \)

then 1) does not hold

\(\Rightarrow \) the PL does not hold for \(B \)

\(\Rightarrow \) \(B \) is not regular
Pumping lemma for regular lang.

Example: \(C = \{ w \mid w \text{ has equal number of 0's and 1's} \} \)

by contradiction, assume \(C \) is regular
then the PL holds for \(C \) : there is the pl. constant \(p \) for \(C \)
therefore every string in \(C \) of length \(\geq p \) must satisfy 0)-3)

IDEA: produce one string \(s \) s.t. \(s \in C \) and \(|s| \geq p \)
for which 0)-3) cannot hold

Can we take:
\(s = \text{0011} \) \(\not\in \text{not in } C, \not\text{OK} \)
\(s = \text{0011} \in C, \text{ but not longer than } p \) (we do not know if it's longer, depends on \(p \), but we only know that \(p \) exists, not the actual value)

Let's consider:
\(s = \text{0}^p1^p \in C \checkmark \)
\(|s| = 2p \geq p \checkmark \)
we'll see if 0)-3) can hold
the same argument as previous slide \(\square \)
Pumping lemma for regular lang.

Example: \(F = \{ \text{ww} \mid w \in \{0,1\}^* \} \)

by contradiction, assume \(F \) regular and let \(p \) be the PL constant,
we'll find \(s \in F \) of length \(\geq p \) s.t. (0)-(3) cannot hold \(\forall \) contradiction

let's take \(s = (01)^p(01)^p \)

\[S = 010101\ldots01 \]

Then \(x = 01 \)
\(y = 01 \)
\(z = (01)^{2p-2} \)

satisfy (1)-(3) \(\rightarrow \) this \(s \) does not do the trick

another attempt:
\(S = 0^p1^p0^p1^p \)

\[S = 0^p|1^p|0^p|1^p \]

let's consider an \(xy^iz \) split satisfying (2) and (3):

by (3) \(xy \) contains only 0's from the initial 0-segment

by (2) \(y \) contains \(\geq 1 \) zero

by (1) any \(i \geq 0 \) \(xy^iz \in F \) should hold

let's \(i = 2 \) \(xy^2z \) \(\notin \) the first block of zeros has length \(> p \)

followed by \(1^p0^p1^p \) therefore \(xyz2 \notin F \)

\(\square \)
Example: $D = \{ 1^k \mid k \geq 0 \text{ is a square} \}$

by contradiction
suppose D is regular. let p be the PL constant.
we'll find $s \in D$ of length $\geq p$ s.t. (1-3) do not hold.

Take $s = 1^p \in D$, length $|s| = p^2 \geq p$

Suppose $s = xyz$ by
\begin{align*}
1) & \forall i \geq 0: \quad xy^iz \text{ must be in } D \\
2) & y \text{ contains at least one one} \\
3) & |xy| \leq p \\
\end{align*}

$m \leq p$
$m \geq 1$

Therefore xy^2z cannot be of a square length.
thus $s \not\in D$

Can we choose i s.t. xy^iz is not a square?
let's consider $i = 3$

$|xy^iz| = p^2 + m(i-1)$

$p^2 < |xy^iz| \leq p^2 + 2p$

the next larger square after p^2: $(p+1)^2 = p^2 + 2p + 1$

but larger than p^2

$|xy^iz| = p^2 + 2m \leq p^2 + 2p$

$
Pumping lemma for regular lang.

Example: \(E = \{ 0^i 1^j | i > j \} \)

Suppose \(E \) regular, let \(p \) be the PL constant.

Let's take
\[
S = 0^{p+1} 1^p \in E \quad \text{and} \quad |S| = 2p + 1 \geq p
\]

Let's consider
\[
S = xy^2z
\]

By 3) \(xy \) contain only 0's

2) \(y \) contains \(\geq 1 \) zero

1) \(\forall i \geq 0 \): \(xy^iz \) should be in \(E \)

Let's find \(i \) s.t.
\[
xy^iz \in E \quad \text{then we'll be done}
\]

Let's take \(i = 0 \): (no other \(i \) works)

\[
xy^0z = xz \quad \text{# of ones is} \quad p \quad \text{# of zeros is} \quad \leq p + 1 - 1 = p
\]

Thus \(xy^0z \in E \) \(\subseteq \) original

TRY:
\[
\{ 1^k | k \geq 0 \text{ is a prime} \}
\]

\[
S = \overline{0^{p+1} 1^p} = \frac{\overline{0^{p+1}}}{x} \overline{1^p} = \frac{y}{\overline{y}} \overline{z}
\]